Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia.
Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia.
Sci Rep. 2022 Aug 30;12(1):14797. doi: 10.1038/s41598-022-18963-6.
In Alzheimer's disease, the molecular pathogenesis of the extracellular Aβ-amyloid (Aβ) instigation of intracellular tau accumulation is poorly understood. We employed a high-resolution PET scanner, with low detection thresholds, to examine the Aβ-tau association using a convolutional neural network (CNN), and compared results to a standard voxel-wise linear analysis. The full range of Aβ Centiloid values was highly predicted by the tau topography using the CNN (training R = 0.86, validation R = 0.75, testing R = 0.72). Linear models based on tau-SUVR identified widespread positive correlations between tau accumulation and Aβ burden throughout the brain. In contrast, CNN analysis identified focal clusters in the bilateral medial temporal lobes, frontal lobes, precuneus, postcentral gyrus and middle cingulate. At low Aβ levels, information from the middle cingulate, frontal lobe and precuneus regions was more predictive of Aβ burden, while at high Aβ levels, the medial temporal regions were more predictive of Aβ burden. The data-driven CNN approach revealed new associations between tau topography and Aβ burden.
在阿尔茨海默病中,细胞外 Aβ-淀粉样蛋白(Aβ)引发细胞内 tau 积累的分子发病机制还了解甚少。我们使用具有低检测阈值的高分辨率 PET 扫描仪,使用卷积神经网络(CNN)检查 Aβ-tau 关联,并将结果与标准体素线性分析进行比较。使用 CNN(训练 R=0.86,验证 R=0.75,测试 R=0.72)高度预测了 tau 拓扑结构的全范围 Aβ Centiloid 值。基于 tau-SUVR 的线性模型确定了在整个大脑中 tau 积累与 Aβ 负担之间存在广泛的正相关关系。相比之下,CNN 分析确定了双侧内侧颞叶、额叶、楔前叶、后中央回和中扣带的焦点簇。在低 Aβ 水平下,来自中扣带、额叶和楔前叶区域的信息更能预测 Aβ 负担,而在高 Aβ 水平下,内侧颞叶区域更能预测 Aβ 负担。数据驱动的 CNN 方法揭示了 tau 拓扑结构与 Aβ 负担之间的新关联。