Suppr超能文献

镍纳米颗粒辅助木薯皮热解制备生物炭和生物油的燃料特性

Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel.

作者信息

Egbosiuba Titus Chinedu

机构信息

Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State, Nigeria.

出版信息

Heliyon. 2022 Aug 11;8(8):e10114. doi: 10.1016/j.heliyon.2022.e10114. eCollection 2022 Aug.

Abstract

Direct biomass usage as a renewable fuel source and substitute for fossil fuels is discouraging due to high moisture, low energy density and low bulk density. Herein, thermogravimetric analysis (TGA) was conducted at various heating rates to determine peak decomposition temperatures for the dried cassava peels (DCP). The influence of pyrolysis temperature (300, 400, 500 and 600 °C) and heating rates (10, 20 and 30 °C/min) on the nickel nanoparticles catalyzed decomposition of DCP to produce biochar, bio-oil and biogas was investigated and characterized. The results revealed higher biochar (CBC) yield of 68.59 wt%, 62.55 wt% and 56.92 wt% at lower pyrolysis temperature of 300 °C for the different heating rates of 10, 20 and 30 °C/min. The higher carbon content of 52.39, 53.30 and 55.44 wt% was obtained at elevated temperature of 600 °C and heating rates of 10, 20 and 30 °C/min, respectively. At the pyrolysis temperature of 600 °C and heating rates of 10, 20 and 30 °C/min, the optimum yield of bio-oil (24.35, 17.69 and 18.16 wt%) and biogas (31.35, 42.03 and 46.12 wt%) were attained. A high heating value (HHV) of 28.70 MJ/kg was obtained for the biochar at 600 °C. Through the TGA, FTIR and HRSEM results, the thermal stability, hydrophobicity and structural changes of DCP and CBC samples were established. Similarly, the thermal stability of CBC samples increased with increasing pyrolysis temperature. Biochar with optimum fuel properties was produced at 600 °C due to the highest carbon content and high heating value (HHV). Improved kinematic viscosity (3.87 mm/s) and density (0.850 g/cm) were reported at the temperature of 300 °C and heating rate of 30 °C/min, while a higher pH (4.96), HHV (42.68 MJ/kg) and flash point (53.85 min) were presented by the bio-oil at the temperature of 600 °C and heating rate of 30 °C/min. Hence, DCP produced value-added biochar and bio-oil as renewable energy.

摘要

由于水分含量高、能量密度低和堆积密度低,将生物质直接用作可再生燃料来源并替代化石燃料的前景并不乐观。在此,通过热重分析(TGA)在不同加热速率下进行实验,以确定干燥木薯皮(DCP)的峰值分解温度。研究并表征了热解温度(300、400、500和600℃)和加热速率(10、20和30℃/分钟)对镍纳米颗粒催化DCP分解以生产生物炭、生物油和沼气的影响。结果表明,在300℃的较低热解温度下,对于10、20和30℃/分钟的不同加热速率,生物炭(CBC)产率分别较高,为68.59 wt%、62.55 wt%和56.92 wt%。在600℃的高温和10、20和30℃/分钟的加热速率下,碳含量分别达到52.39、53.30和55.44 wt%。在600℃的热解温度和10、20和30℃/分钟的加热速率下,生物油(24.35、17.69和18.16 wt%)和沼气(31.35、42.03和46.12 wt%)的产率达到最佳。在600℃时,生物炭的高热值(HHV)为28.70 MJ/kg。通过TGA、FTIR和HRSEM结果,确定了DCP和CBC样品的热稳定性、疏水性和结构变化。同样,CBC样品的热稳定性随着热解温度的升高而增加。由于碳含量最高和高热值(HHV),在600℃时生产出了具有最佳燃料特性的生物炭。在300℃的温度和30℃/分钟的加热速率下,运动粘度(3.87 mm/s)和密度(0.850 g/cm)有所改善,而在600℃的温度和30℃/分钟的加热速率下,生物油的pH值较高(4.96)、HHV(42.68 MJ/kg)和闪点(53.85分钟)。因此,DCP生产出了具有附加值的生物炭和生物油作为可再生能源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f97/9420488/26c57736b974/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验