Suppr超能文献

一种基于自适应粒子群优化的混合长短期记忆模型用于股票价格时间序列预测。

An adaptive particle swarm optimization-based hybrid long short-term memory model for stock price time series forecasting.

作者信息

Kumar Gourav, Singh Uday Pratap, Jain Sanjeev

机构信息

School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320 India.

School of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320 India.

出版信息

Soft comput. 2022;26(22):12115-12135. doi: 10.1007/s00500-022-07451-8. Epub 2022 Aug 26.

Abstract

In this paper, we presented a long short-term memory (LSTM) network and adaptive particle swarm optimization (PSO)-based hybrid deep learning model for forecasting the stock price of three major stock indices such as Sensex, S&P 500, and Nifty 50 for short term and long term. Although the LSTM can handle uncertain, sequential, and nonlinear data, the biggest challenge in it is optimizing its weights and bias. The back-propagation through time algorithm has a drawback to overfit the data and being stuck in local minima. Thus, we proposed PSO-based hybrid deep learning model for evolving the initial weights of LSTM and fully connected layer (FCL). Furthermore, we introduced an adaptive approach for improving the inertia coefficient of PSO using the velocity of particles. The proposed method is an aggregation of adaptive PSO and Adam optimizer for training the LSTM. The adaptive PSO attempts to evolve the initial weights in different layers of the LSTM network and FCL. This research also compares the forecasting efficacy of the proposed method to the genetic algorithm (GA)-based hybrid LSTM model, the Elman neural network (ENN), and standard LSTM. Experimental findings demonstrate that the suggested model is successful in achieving the optimum initial weights and bias of the LSTM and FC layers, as well as superior forecasting accuracy.

摘要

在本文中,我们提出了一种基于长短期记忆(LSTM)网络和自适应粒子群优化(PSO)的混合深度学习模型,用于预测印度孟买敏感30指数、标准普尔500指数和印度国家证券交易所50指数这三大股票指数的短期和长期股价。尽管LSTM能够处理不确定、序列和非线性数据,但其最大的挑战在于优化其权重和偏差。通过时间反向传播算法存在数据过拟合和陷入局部最小值的缺点。因此,我们提出了基于PSO的混合深度学习模型来优化LSTM和全连接层(FCL)的初始权重。此外,我们引入了一种自适应方法,利用粒子速度来改进PSO的惯性系数。所提出的方法是自适应PSO和Adam优化器的结合,用于训练LSTM。自适应PSO试图优化LSTM网络和FCL不同层的初始权重。本研究还将所提出方法的预测效果与基于遗传算法(GA)的混合LSTM模型、埃尔曼神经网络(ENN)和标准LSTM进行了比较。实验结果表明,所建议的模型成功地实现了LSTM和FC层的最优初始权重和偏差,以及更高的预测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed8e/9415266/3b3390562c08/500_2022_7451_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验