Tian Hao, Yuan Hao, Yan Ke, Guo Jia
Hubei Key Laboratory of Digital Finance Innovation (Hubei University of Economics), Wuhan, China.
School of Information Engineering, Hubei University of Economics, Wuhan, Hubei, China.
PeerJ Comput Sci. 2024 May 28;10:e2048. doi: 10.7717/peerj-cs.2048. eCollection 2024.
In the quest for sustainable urban development, precise quantification of urban green space is paramount. This research delineates the implementation of a Cosine Adaptive Particle Swarm Optimization Long Short-Term Memory (CAPSO-LSTM) model, utilizing a comprehensive dataset from Beijing (1998-2021) to train and test the model. The CAPSO-LSTM model, which integrates a cosine adaptive mechanism into particle swarm optimization, advances the optimization of long short-term memory (LSTM) network hyperparameters. Comparative analyses are conducted against conventional LSTM and Partical Swarm Optimization (PSO)-LSTM frameworks, employing mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) as evaluative benchmarks. The findings indicate that the CAPSO-LSTM model exhibits a substantial improvement in prediction accuracy over the LSTM model, manifesting as a 66.33% decrease in MAE, a 73.78% decrease in RMSE, and a 57.14% decrease in MAPE. Similarly, when compared to the PSO-LSTM model, the CAPSO-LSTM model demonstrates a 58.36% decrease in MAE, a 65.39% decrease in RMSE, and a 50% decrease in MAPE. These results underscore the efficacy of the CAPSO-LSTM model in enhancing urban green space area prediction, suggesting its significant potential for aiding urban planning and environmental policy formulation.
在追求可持续城市发展的过程中,精确量化城市绿地至关重要。本研究阐述了余弦自适应粒子群优化长短期记忆(CAPSO-LSTM)模型的实施情况,利用来自北京的综合数据集(1998 - 2021年)对该模型进行训练和测试。CAPSO-LSTM模型将余弦自适应机制集成到粒子群优化中,推进了长短期记忆(LSTM)网络超参数的优化。针对传统LSTM和粒子群优化(PSO)-LSTM框架进行了对比分析,采用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)作为评估基准。研究结果表明,CAPSO-LSTM模型在预测准确性方面比LSTM模型有显著提高,表现为MAE降低66.33%,RMSE降低73.78%,MAPE降低57.14%。同样,与PSO-LSTM模型相比,CAPSO-LSTM模型的MAE降低58.36%,RMSE降低65.39%,MAPE降低50%。这些结果强调了CAPSO-LSTM模型在提高城市绿地面积预测方面的有效性,表明其在协助城市规划和环境政策制定方面具有巨大潜力。