Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.
Department of Psychology, Princeton University, Princeton, New Jersey.
J Neurophysiol. 2022 Oct 1;128(4):919-926. doi: 10.1152/jn.00108.2022. Epub 2022 Aug 31.
In vivo electrophysiology requires direct access to brain tissue, necessitating the development and refinement of surgical procedures and techniques that promote the health and well-being of animal subjects. Here, we report a series of findings noted on structural magnetic resonance imaging (MRI) scans in monkeys with MRI-compatible implants following small craniotomies that provide access for intracranial electrophysiology. We found distinct brain regions exhibiting hyperintensities in T2-weighted scans that were prominent underneath the sites at which craniotomies had been performed. We interpreted these hyperintensities as edema of the neural tissue and found that they were predominantly present following electric and piezoelectric drilling, but not when manual, hand-operated drills were used. Furthermore, the anomalies subsided within 2-3 wk following surgery. Our report highlights the utility of MRI-compatible implants that promote clinical examination of the animal's brain, sometimes revealing findings that may go unnoticed when incompatible implants are used. We show replicable differences in outcome when using electric versus mechanical devices, both ubiquitous in the field. If electric drills are used, our report cautions against electrophysiological recordings from tissue directly underneath the craniotomy for the first 2-3 wk following the procedure due to putative edema. Close examination of structural MRI in eight nonhuman primates following craniotomy surgeries for intracranial electrophysiology highlights a prevalence of hyperintensities on T2-weighted scans following surgeries conducted using electric and piezoelectric drills, but not when using mechanical, hand-operated drills. We interpret these anomalies as edema of neural tissue that resolved 2-3 wk postsurgery. This finding is especially of interest as electrophysiological recordings from compromised tissue may directly influence the integrity of collected data immediately following surgery.
在体电生理学需要直接进入脑组织,这就需要开发和完善手术程序和技术,以促进动物实验对象的健康和福利。在这里,我们报告了一系列在使用磁共振兼容植入物进行小颅切开术以进行颅内电生理学检查的猴子的结构磁共振成像(MRI)扫描中观察到的发现。我们发现,在 T2 加权扫描中,明显的大脑区域表现出高强度信号,这些信号在进行颅切开术的部位下方突出。我们将这些高强度信号解释为神经组织的水肿,并发现它们主要存在于电钻和压电钻钻孔后,但在使用手动操作的钻头时则不存在。此外,这些异常在手术后 2-3 周内消退。我们的报告强调了使用磁共振兼容植入物的实用性,这些植入物促进了对动物大脑的临床检查,有时会揭示出使用不兼容植入物时可能不会注意到的发现。我们展示了当使用电动与机械装置时,结果存在可复制的差异,这两种装置在该领域都很普遍。如果使用电钻,我们的报告警告在手术后的头 2-3 周内,由于推测的水肿,不要在颅切开术下方的组织上进行电生理记录。对 8 只非人类灵长类动物进行颅内电生理学颅切开术的结构 MRI 进行密切检查,突出显示了使用电动和压电钻进行手术时 T2 加权扫描上高强度信号的普遍性,但使用机械手动钻头时则没有。我们将这些异常解释为神经组织水肿,术后 2-3 周内消退。这一发现尤其有趣,因为受损组织的电生理记录可能会直接影响手术后立即收集数据的完整性。