Suppr超能文献

将人工智能用作皮肤病诊断决策支持工具:一项观察性前瞻性队列研究方案

Using Artificial Intelligence as a Diagnostic Decision Support Tool in Skin Disease: Protocol for an Observational Prospective Cohort Study.

作者信息

Escalé-Besa Anna, Fuster-Casanovas Aïna, Börve Alexander, Yélamos Oriol, Fustà-Novell Xavier, Esquius Rafat Mireia, Marin-Gomez Francesc X, Vidal-Alaball Josep

机构信息

Centre d'Atenció Primària Navàs-Balsareny, Institut Català de la Salut, Navàs, Spain.

Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain.

出版信息

JMIR Res Protoc. 2022 Aug 31;11(8):e37531. doi: 10.2196/37531.

Abstract

BACKGROUND

Dermatological conditions are a relevant health problem. Each person has an average of 1.6 skin diseases per year, and consultations for skin pathology represent 20% of the total annual visits to primary care and around 35% are referred to a dermatology specialist. Machine learning (ML) models can be a good tool to help primary care professionals, as it can analyze and optimize complex sets of data. In addition, ML models are increasingly being applied to dermatology as a diagnostic decision support tool using image analysis, especially for skin cancer detection and classification.

OBJECTIVE

This study aims to perform a prospective validation of an image analysis ML model as a diagnostic decision support tool for the diagnosis of dermatological conditions.

METHODS

In this prospective study, 100 consecutive patients who visit a participant general practitioner (GP) with a skin problem in central Catalonia were recruited. Data collection was planned to last 7 months. Anonymized pictures of skin diseases were taken and introduced to the ML model interface (capable of screening for 44 different skin diseases), which returned the top 5 diagnoses by probability. The same image was also sent as a teledermatology consultation following the current stablished workflow. The GP, ML model, and dermatologist's assessments will be compared to calculate the precision, sensitivity, specificity, and accuracy of the ML model. The results will be represented globally and individually for each skin disease class using a confusion matrix and one-versus-all methodology. The time taken to make the diagnosis will also be taken into consideration.

RESULTS

Patient recruitment began in June 2021 and lasted for 5 months. Currently, all patients have been recruited and the images have been shown to the GPs and dermatologists. The analysis of the results has already started.

CONCLUSIONS

This study will provide information about ML models' effectiveness and limitations. External testing is essential for regulating these diagnostic systems to deploy ML models in a primary care practice setting.

摘要

背景

皮肤病是一个重要的健康问题。每人每年平均患1.6种皮肤病,皮肤病理学咨询占初级保健机构年度就诊总数的20%,约35%的患者会转诊至皮肤科专家处。机器学习(ML)模型可以成为帮助初级保健专业人员的良好工具,因为它可以分析和优化复杂的数据集。此外,ML模型越来越多地被应用于皮肤科,作为一种使用图像分析的诊断决策支持工具,特别是用于皮肤癌的检测和分类。

目的

本研究旨在对一种图像分析ML模型作为皮肤病诊断决策支持工具进行前瞻性验证。

方法

在这项前瞻性研究中,招募了100名连续就诊于加泰罗尼亚中部一位参与研究的全科医生(GP)且患有皮肤问题的患者。数据收集计划持续7个月。拍摄了皮肤病的匿名图片并导入ML模型界面(能够筛查44种不同的皮肤病),该界面按概率返回前5个诊断结果。同一张图片也按照当前既定的工作流程作为远程皮肤病咨询发送。将比较GP、ML模型和皮肤科医生的评估结果,以计算ML模型的精确度、灵敏度、特异性和准确性。结果将使用混淆矩阵和一对多方法,以全局和每种皮肤病类别的个体形式呈现。还将考虑做出诊断所需的时间。

结果

患者招募于2021年6月开始,持续了5个月。目前,所有患者均已招募完成,图片也已展示给GP和皮肤科医生。结果分析已经开始。

结论

本研究将提供有关ML模型有效性和局限性的信息。外部测试对于规范这些诊断系统以在初级保健实践环境中部署ML模型至关重要。

相似文献

3
Teledermatology for diagnosing skin cancer in adults.用于诊断成人皮肤癌的远程皮肤病学。
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013193. doi: 10.1002/14651858.CD013193.

本文引用的文献

2
Application of artificial intelligence to the electrocardiogram.人工智能在心电图中的应用。
Eur Heart J. 2021 Dec 7;42(46):4717-4730. doi: 10.1093/eurheartj/ehab649.
5
Review of Machine Learning in Predicting Dermatological Outcomes.机器学习在预测皮肤病学结果中的综述。
Front Med (Lausanne). 2020 Jun 12;7:266. doi: 10.3389/fmed.2020.00266. eCollection 2020.
7
A deep learning system for differential diagnosis of skin diseases.深度学习系统用于皮肤病的鉴别诊断。
Nat Med. 2020 Jun;26(6):900-908. doi: 10.1038/s41591-020-0842-3. Epub 2020 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验