文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能应用(Aysa)在皮肤科诊断中的疗效:横断面分析。

Efficacy of an Artificial Intelligence App (Aysa) in Dermatological Diagnosis: Cross-Sectional Analysis.

机构信息

Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be) University, Vijayapura, Karnataka, India.

出版信息

JMIR Dermatol. 2024 Jul 2;7:e48811. doi: 10.2196/48811.


DOI:10.2196/48811
PMID:38954807
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11252620/
Abstract

BACKGROUND: Dermatology is an ideal specialty for artificial intelligence (AI)-driven image recognition to improve diagnostic accuracy and patient care. Lack of dermatologists in many parts of the world and the high frequency of cutaneous disorders and malignancies highlight the increasing need for AI-aided diagnosis. Although AI-based applications for the identification of dermatological conditions are widely available, research assessing their reliability and accuracy is lacking. OBJECTIVE: The aim of this study was to analyze the efficacy of the Aysa AI app as a preliminary diagnostic tool for various dermatological conditions in a semiurban town in India. METHODS: This observational cross-sectional study included patients over the age of 2 years who visited the dermatology clinic. Images of lesions from individuals with various skin disorders were uploaded to the app after obtaining informed consent. The app was used to make a patient profile, identify lesion morphology, plot the location on a human model, and answer questions regarding duration and symptoms. The app presented eight differential diagnoses, which were compared with the clinical diagnosis. The model's performance was evaluated using sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and F-score. Comparison of categorical variables was performed with the χ test and statistical significance was considered at P<.05. RESULTS: A total of 700 patients were part of the study. A wide variety of skin conditions were grouped into 12 categories. The AI model had a mean top-1 sensitivity of 71% (95% CI 61.5%-74.3%), top-3 sensitivity of 86.1% (95% CI 83.4%-88.6%), and all-8 sensitivity of 95.1% (95% CI 93.3%-96.6%). The top-1 sensitivities for diagnosis of skin infestations, disorders of keratinization, other inflammatory conditions, and bacterial infections were 85.7%, 85.7%, 82.7%, and 81.8%, respectively. In the case of photodermatoses and malignant tumors, the top-1 sensitivities were 33.3% and 10%, respectively. Each category had a strong correlation between the clinical diagnosis and the probable diagnoses (P<.001). CONCLUSIONS: The Aysa app showed promising results in identifying most dermatoses.

摘要

背景:皮肤病学是人工智能(AI)驱动的图像识别改善诊断准确性和患者护理的理想专业。世界上许多地区缺乏皮肤科医生,以及皮肤疾病和恶性肿瘤的高频率,突出了对 AI 辅助诊断的日益增长的需求。尽管用于识别皮肤病的基于 AI 的应用程序已经广泛可用,但缺乏对其可靠性和准确性的研究评估。 目的:本研究旨在分析 Aysa AI 应用程序作为印度一个半城市小镇各种皮肤病初步诊断工具的功效。 方法:这项观察性横断面研究纳入了年龄在 2 岁以上的皮肤科诊所就诊患者。在获得知情同意后,将患有各种皮肤疾病的个体的病变图像上传到应用程序。该应用程序用于制作患者档案,识别病变形态,在人体模型上绘制位置,并回答有关持续时间和症状的问题。该应用程序提供了 8 种鉴别诊断,将其与临床诊断进行比较。使用敏感性、特异性、准确性、阳性预测值、阴性预测值和 F 分数评估模型性能。使用 χ 检验比较分类变量,P<.05 时认为具有统计学意义。 结果:共有 700 名患者参与了这项研究。广泛的皮肤疾病分为 12 类。AI 模型的平均 top-1 敏感性为 71%(95%CI 61.5%-74.3%),top-3 敏感性为 86.1%(95%CI 83.4%-88.6%),所有 8 种敏感性为 95.1%(95%CI 93.3%-96.6%)。皮肤寄生虫病、角化障碍、其他炎症性疾病和细菌感染的 top-1 敏感性分别为 85.7%、85.7%、82.7%和 81.8%。光皮病和恶性肿瘤的 top-1 敏感性分别为 33.3%和 10%。每个类别中,临床诊断与可能的诊断之间都具有很强的相关性(P<.001)。 结论:Aysa 应用程序在识别大多数皮肤病方面显示出有希望的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/11252620/8dd479e9edd7/derma_v7i1e48811_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/11252620/9dc96c00fd03/derma_v7i1e48811_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/11252620/8926fb0e4df9/derma_v7i1e48811_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/11252620/8dd479e9edd7/derma_v7i1e48811_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/11252620/9dc96c00fd03/derma_v7i1e48811_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/11252620/8926fb0e4df9/derma_v7i1e48811_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/11252620/8dd479e9edd7/derma_v7i1e48811_fig3.jpg

相似文献

[1]
Efficacy of an Artificial Intelligence App (Aysa) in Dermatological Diagnosis: Cross-Sectional Analysis.

JMIR Dermatol. 2024-7-2

[2]
Analyzing the Predictability of an Artificial Intelligence App (Tibot) in the Diagnosis of Dermatological Conditions: A Cross-sectional Study.

JMIR Dermatol. 2023-3-1

[3]
The performance of an artificial intelligence-based computer vision mobile application for the image diagnosis of genital dermatoses: a prospective cross-sectional study.

Int J Dermatol. 2024-8

[4]
Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care.

Sci Rep. 2023-3-15

[5]
Using artificial intelligence on dermatology conditions in Uganda: a case for diversity in training data sets for machine learning.

Afr Health Sci. 2023-6

[6]
Artificial Intelligence Smartphone Application for Detection of Simulated Skin Changes: An In Vivo Pilot Study.

Skin Res Technol. 2024-10

[7]
Validation of a Market-Approved Artificial Intelligence Mobile Health App for Skin Cancer Screening: A Prospective Multicenter Diagnostic Accuracy Study.

Dermatology. 2022

[8]
Ethical considerations for artificial intelligence in dermatology: a scoping review.

Br J Dermatol. 2024-5-17

[9]
A machine learning-based, decision support, mobile phone application for diagnosis of common dermatological diseases.

J Eur Acad Dermatol Venereol. 2021-2

[10]
Evaluation of an artificial intelligence-based decision support for the detection of cutaneous melanoma in primary care: a prospective real-life clinical trial.

Br J Dermatol. 2024-6-20

本文引用的文献

[1]
Analyzing the Predictability of an Artificial Intelligence App (Tibot) in the Diagnosis of Dermatological Conditions: A Cross-sectional Study.

JMIR Dermatol. 2023-3-1

[2]
Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends.

J Clin Med. 2022-11-18

[3]
Using Artificial Intelligence as a Diagnostic Decision Support Tool in Skin Disease: Protocol for an Observational Prospective Cohort Study.

JMIR Res Protoc. 2022-8-31

[4]
Usefulness of Smartphones in Dermatology: A US-Based Review.

Int J Environ Res Public Health. 2022-3-17

[5]
New diagnostic and imaging technologies in dermatology.

J Cosmet Dermatol. 2021-12

[6]
Task shifting in dermatology: Nurses' role.

Indian J Dermatol Venereol Leprol. 2021

[7]
A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment.

Front Med (Lausanne). 2021-4-16

[8]
A convolutional neural network architecture for the recognition of cutaneous manifestations of COVID-19.

Dermatol Ther. 2021-3

[9]
Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges.

Int J Environ Res Public Health. 2021-1-1

[10]
Artificial Intelligence in Dermatology: A Practical Introduction to a Paradigm Shift.

Indian Dermatol Online J. 2020-11-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索