Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
Blood Adv. 2023 Apr 25;7(8):1460-1476. doi: 10.1182/bloodadvances.2022007486.
Despite significant advancements in developing selective FMS-like tyrosine kinase 3 (FLT3) inhibitors, resistance to treatment is common even on continued therapy. Acquisition of on-target mutations or adaptation to MAPK, JAK2, and ABL signaling pathways drive treatment failure and disease relapse. Although combinatorial targeting of all escape routes in preclinical models demonstrated its efficacy, the clinical application is challenging owing to drug-drug interaction and differing pharmacokinetics of the inhibitors. We reasoned that selective polypharmacological targeting could lead to a durable response with reduced toxicity. A cell-based screening was carried out to identify inhibitors targeting FLT3, RAS-MAPK, BCR-ABL, and JAK2 to target the adaptive resistance observed with FLT3 inhibitors. Here, we show that pluripotin is an equipotent inhibitor of FLT3, BCR-ABL, and JAK2 in addition to inhibiting Ras-GAP and extracellular signal-regulated kinase 1 (ERK1). Structural modeling studies revealed that pluripotin is a type II kinase inhibitor that selectively binds with inactive conformations of FLT3, ABL, and JAK2. Pluripotin showed potent inhibitory activity on both mouse and human cells expressing FLT3ITD, including clinically challenging resistant mutations of the gatekeeper residue, F691L. Likewise, pluripotin suppressed the adaptive resistance conferred by the activation of RAS-MAPK pathways, BCR-ABL, and JAK2 signaling. Treatment with pluripotin curbed the progression of acute myeloid leukemia (AML) in multiple in vivo models including patient-derived primary AML cells in mouse xenotransplants. As a proof of concept, we demonstrate that targeted polypharmacological inhibition of key signaling nodes driving adaptive resistance can provide a durable response.
尽管在开发选择性 FMS 样酪氨酸激酶 3(FLT3)抑制剂方面取得了重大进展,但即使继续治疗,也常常会出现耐药性。靶标突变的获得或对 MAPK、JAK2 和 ABL 信号通路的适应会导致治疗失败和疾病复发。虽然在临床前模型中对所有逃避途径进行联合靶向治疗显示出其疗效,但由于药物相互作用和抑制剂的药代动力学不同,其临床应用具有挑战性。我们认为选择性多药理学靶向治疗可能会导致持久反应,同时降低毒性。进行了基于细胞的筛选,以鉴定针对 FLT3、RAS-MAPK、BCR-ABL 和 JAK2 的抑制剂,以针对观察到的 FLT3 抑制剂的适应性耐药。在这里,我们表明 pluripotin 是 FLT3、BCR-ABL 和 JAK2 的等效抑制剂,除了抑制 Ras-GAP 和细胞外信号调节激酶 1(ERK1)外。结构建模研究表明,pluripotin 是一种 II 型激酶抑制剂,它选择性地与 FLT3、ABL 和 JAK2 的非活性构象结合。Pluripotin 对表达 FLT3ITD 的小鼠和人类细胞均具有强大的抑制活性,包括门控残基 F691L 的临床挑战性耐药突变。同样,pluripotin 抑制了 RAS-MAPK 途径、BCR-ABL 和 JAK2 信号的适应性耐药。Pluripotin 治疗抑制了包括小鼠异种移植中患者来源的原发性 AML 细胞在内的多种体内模型中的急性髓细胞白血病(AML)进展。作为概念验证,我们证明靶向多药理学抑制驱动适应性耐药的关键信号节点可以提供持久的反应。