Suppr超能文献

从运动控制到模拟人形足球中的团队协作。

From motor control to team play in simulated humanoid football.

机构信息

DeepMind, London, UK.

出版信息

Sci Robot. 2022 Aug 31;7(69):eabo0235. doi: 10.1126/scirobotics.abo0235.

Abstract

Learning to combine control at the level of joint torques with longer-term goal-directed behavior is a long-standing challenge for physically embodied artificial agents. Intelligent behavior in the physical world unfolds across multiple spatial and temporal scales: Although movements are ultimately executed at the level of instantaneous muscle tensions or joint torques, they must be selected to serve goals that are defined on much longer time scales and that often involve complex interactions with the environment and other agents. Recent research has demonstrated the potential of learning-based approaches applied to the respective problems of complex movement, long-term planning, and multiagent coordination. However, their integration traditionally required the design and optimization of independent subsystems and remains challenging. In this work, we tackled the integration of motor control and long-horizon decision-making in the context of simulated humanoid football, which requires agile motor control and multiagent coordination. We optimized teams of agents to play simulated football via reinforcement learning, constraining the solution space to that of plausible movements learned using human motion capture data. They were trained to maximize several environment rewards and to imitate pretrained football-specific skills if doing so led to improved performance. The result is a team of coordinated humanoid football players that exhibit complex behavior at different scales, quantified by a range of analysis and statistics, including those used in real-world sport analytics. Our work constitutes a complete demonstration of learned integrated decision-making at multiple scales in a multiagent setting.

摘要

学习将关节扭矩级别的控制与长期目标导向的行为相结合,是物理实体智能体长期面临的挑战。物理世界中的智能行为在多个时空尺度上展开:虽然运动最终是在瞬间肌肉张力或关节扭矩的水平上执行,但它们必须被选择来服务于在更长时间尺度上定义的目标,这些目标通常涉及与环境和其他代理的复杂交互。最近的研究已经证明了基于学习的方法在复杂运动、长期规划和多代理协调的各自问题上的应用潜力。然而,它们的集成传统上需要独立子系统的设计和优化,仍然具有挑战性。在这项工作中,我们在模拟人形足球的背景下解决了运动控制和长期决策的集成问题,这需要敏捷的运动控制和多代理协调。我们通过强化学习优化代理团队来踢模拟足球,将解决方案空间约束为使用人体运动捕捉数据学习的合理运动。他们被训练最大化几个环境奖励,并模仿预训练的足球特定技能,如果这样做能提高性能。结果是一个协调的人形足球运动员团队,在不同的尺度上表现出复杂的行为,通过一系列的分析和统计来量化,包括在现实世界体育分析中使用的那些。我们的工作构成了在多代理环境中多个尺度上学习综合决策的完整演示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验