Suppr超能文献

基于实时街道图像与空气质量测量配对预测短期超细颗粒物暴露

Prediction of Short-Term Ultrafine Particle Exposures Using Real-Time Street-Level Images Paired with Air Quality Measurements.

机构信息

Civil and Mineral Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada.

Urban Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

Environ Sci Technol. 2022 Sep 20;56(18):12886-12897. doi: 10.1021/acs.est.2c03193. Epub 2022 Aug 31.

Abstract

Within-city ultrafine particle (UFP) concentrations vary sharply since they are influenced by various factors. We developed prediction models for short-term UFP exposures using street-level images collected by a camera installed on a vehicle rooftop, paired with air quality measurements conducted during a large-scale mobile monitoring campaign in Toronto, Canada. Convolutional neural network models were trained to extract traffic and built environment features from images. These features, along with regional air quality and meteorology data were used to predict short-term UFP concentration as a continuous and categorical variable. A gradient boost model for UFP as a continuous variable achieved = 0.66 and RMSE = 9391.8#/cm (mean values for 10-fold cross-validation). The model predicting categorical UFP achieved accuracies for "Low" and "High" UFP of 77 and 70%, respectively. The presence of trucks and other traffic parameters were associated with higher UFPs, and the spatial distribution of elevated short-term UFP followed the distribution of single-unit trucks. This study demonstrates that pictures captured on urban streets, associated with regional air quality and meteorology, can adequately predict short-term UFP exposure. Capturing the spatial distribution of high-frequency short-term UFP spikes in urban areas provides crucial information for the management of near-road air pollution hot spots.

摘要

由于受多种因素影响,城市内的超细颗粒物(UFP)浓度变化剧烈。我们使用安装在车辆顶篷上的摄像机采集的街景图像,并结合在加拿大多伦多进行的大规模移动监测活动中的空气质量测量数据,开发了短期 UFP 暴露的预测模型。卷积神经网络模型经过训练,可以从图像中提取交通和建筑环境特征。这些特征以及区域空气质量和气象数据被用于预测短期 UFP 浓度作为连续和分类变量。用于 UFP 连续变量的梯度提升模型的 = 0.66 和 RMSE = 9391.8#/cm(10 倍交叉验证的平均值)。预测分类 UFP 的模型分别实现了“低”和“高”UFP 的准确率为 77%和 70%。卡车的存在和其他交通参数与更高的 UFP 有关,短期 UFP 的升高与单辆卡车的分布一致。本研究表明,从城市街道上拍摄的照片,结合区域空气质量和气象数据,可以充分预测短期 UFP 暴露。捕捉城市地区高频短期 UFP 峰值的空间分布为管理道路附近的空气污染热点提供了关键信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验