Shen Zhichuan, Zhong Jiawei, Jiang Shiyong, Xie Wenhao, Zhan Shiying, Lin Kaiji, Zeng Linyong, Hu Hailing, Lin Guide, Lin Yuhan, Sun Shuhui, Shi Zhicong
Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
School of Electrical Engineering, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China.
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):41022-41036. doi: 10.1021/acsami.2c11397. Epub 2022 Aug 31.
Because of their high ionic conductivity, utilizing gel polymer electrolytes (GPEs) is thought to be an effective way to accomplish high-energy-density batteries. Nevertheless, most GPEs have poor adaptability to Ni-rich cathodes to alleviate the problem of inevitable rapid capacity decay during cycling. Therefore, to match LiNiCoMnO (NCM811), we applied pentaerythritol tetraacrylate (PETEA) monomers to polymerize in situ in a polyacrylonitrile (PAN) membrane to obtain GPEs (PETEA-TCGG-PAN). The impedance variations and key groups during the in situ polymerization of PETEA-TCGG-PAN are investigated in detail. PETEA-TCGG-PAN with a high lithium-ion transference number (0.77) exhibits an electrochemical decomposition voltage of 5.15 V. Noticeably, the NCM811|PETEA-TCGG-PAN|Li battery can cycle at 2 for 120 cycles with a capacity retention rate of 89%. Even at 6, the discharge specific capacity is able to reach 101.47 mAh g. The combination of LiF and LiCO at the CEI interface is the reason for the improved rate performance. Moreover, when commercialized LFP is used as the cathode, the battery can also cycle stably for 150 cycles at 0.5. PETEA and PAN can together foster the transportation of Li with the construction of a fast ion transport channel, making a contribution to stable charge-discharge of the above batteries. This study provides an innovative design philosophy for designing in situ GPEs in high-energy-density lithium metal batteries.
由于其高离子电导率,利用凝胶聚合物电解质(GPE)被认为是实现高能量密度电池的有效途径。然而,大多数GPE对富镍阴极的适应性较差,难以缓解循环过程中不可避免的快速容量衰减问题。因此,为了匹配LiNiCoMnO(NCM811),我们将季戊四醇四丙烯酸酯(PETEA)单体在聚丙烯腈(PAN)膜中原位聚合,以获得GPE(PETEA-TCGG-PAN)。详细研究了PETEA-TCGG-PAN原位聚合过程中的阻抗变化和关键基团。具有高锂离子迁移数(0.77)的PETEA-TCGG-PAN表现出5.15 V的电化学分解电压。值得注意的是,NCM811|PETEA-TCGG-PAN|Li电池在2C下可循环120次,容量保持率为89%。即使在6C时,放电比容量也能达到101.47 mAh g。CEI界面处LiF和LiCO的组合是倍率性能提高的原因。此外,当使用商业化的LFP作为阴极时,电池在0.5C下也能稳定循环150次。PETEA和PAN可以共同促进Li的传输,构建快速离子传输通道,为上述电池的稳定充放电做出贡献。本研究为高能量密度锂金属电池中原位GPE的设计提供了一种创新的设计理念。