Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
Adv Sci (Weinh). 2022 Oct;9(30):e2202993. doi: 10.1002/advs.202202993. Epub 2022 Aug 31.
A malformed tumour vascular network provokes the nutrient-deprived tumour microenvironment (TME), which conversely activates endothelial cell (EC) functions and stimulates neovascularization. Emerging evidence suggests that the flexible metabolic adaptability of tumour cells helps to establish a metabolic symbiosis among various cell subpopulations in the fluctuating TME. In this study, the authors propose a novel metabolic link between bladder cancer (BCa) cells and ECs in the nutrient-scarce TME, in which BCa-secreted glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1) via small extracellular vesicles (sEVs) reprograms glucose metabolism by increasing hexosamine biosynthesis pathway flux in ECs and thus enhances O-GlcNAcylation. Moreover, seryl-tRNA synthetase (SerRS) O-GlcNAcylation at serine 101 in ECs promotes its degradation by ubiquitination and impeded importin α5-mediated nuclear translocation. Intranuclear SerRS attenuates vascular endothelial growth factor transcription by competitively binding to the GC-rich region of the proximal promotor. Additionally, GFAT1 knockout in tumour cells blocks SerRS O-GlcNAcylation in ECs and attenuates angiogenesis both in vitro and in vivo. However, administration of GFAT1-overexpressing BCa cells-derived sEVs increase the angiogenetic activity in the ECs of GFAT1-knockout mice. In summary, this study suggests that inhibiting sEV-mediated GFAT1 secretion from BCa cells and targeting SerRS O-GlcNAcylation in ECs may serve as novel strategies for BCa antiangiogenetic therapy.
畸形的肿瘤血管网络会引发营养缺乏的肿瘤微环境(TME),而 TME 反过来又会激活内皮细胞(EC)的功能并刺激新血管生成。新出现的证据表明,肿瘤细胞灵活的代谢适应性有助于在波动的 TME 中建立各种细胞亚群之间的代谢共生关系。在这项研究中,作者提出了一种在营养匮乏的 TME 中膀胱癌(BCa)细胞与 EC 之间的新代谢联系,BCa 分泌的谷氨酰胺-果糖-6-磷酸氨基转移酶 1(GFAT1)通过小细胞外囊泡(sEVs)在 EC 中增加己糖胺生物合成途径的通量,从而重新编程葡萄糖代谢,进而增强 O-GlcNAc 化。此外,EC 中 seryl-tRNA 合成酶(SerRS)第 101 位丝氨酸的 O-GlcNAc 化通过泛素化促进其降解,并阻碍 importin α5 介导的核转位。核内 SerRS 通过与近端启动子富含 GC 的区域竞争结合来减弱血管内皮生长因子的转录。此外,肿瘤细胞中 GFAT1 的敲除会阻断 EC 中 SerRS 的 O-GlcNAc 化,并在体外和体内均减弱血管生成。然而,给予 GFAT1 过表达的 BCa 细胞衍生的 sEVs 会增加 GFAT1 敲除小鼠 ECs 的血管生成活性。总之,这项研究表明,抑制 BCa 细胞中 sEV 介导的 GFAT1 分泌和靶向 EC 中 SerRS 的 O-GlcNAc 化可能成为 BCa 抗血管生成治疗的新策略。