Suppr超能文献

用于按需除冰而不融化的智能低界面韧性涂层。

Smart low interfacial toughness coatings for on-demand de-icing without melting.

作者信息

Azimi Dijvejin Zahra, Jain Mandeep Chhajer, Kozak Ryan, Zarifi Mohammad H, Golovin Kevin

机构信息

Okanagan Polymer Engineering Research & Applications Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.

Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada.

出版信息

Nat Commun. 2022 Aug 31;13(1):5119. doi: 10.1038/s41467-022-32852-6.

Abstract

Ice accretion causes problems in vital industries and has been addressed over the past decades with either passive or active de-icing systems. This work presents a smart, hybrid (passive and active) de-icing system through the combination of a low interfacial toughness coating, printed circuit board heaters, and an ice-detecting microwave sensor. The coating's interfacial toughness with ice is found to be temperature dependent and can be modulated using the embedded heaters. Accordingly, de-icing is realized without melting the interface. The synergistic combination of the low interfacial toughness coating and periodic heaters results in a greater de-icing power density than a full-coverage heater system. The hybrid de-icing system also shows durability towards repeated icing/de-icing, mechanical abrasion, outdoor exposure, and chemical contamination. A non-contact planar microwave resonator sensor is additionally designed and implemented to precisely detect the presence or absence of water or ice on the surface while operating beneath the coating, further enhancing the system's energy efficiency. Scalability of the smart coating is demonstrated using large (up to 1 m) iced interfaces. Overall, the smart hybrid system designed here offers a paradigm shift in de-icing that can efficiently render a surface ice-free without the need for energetically expensive interface melting.

摘要

结冰会给重要行业带来问题,在过去几十年里,人们通过被动或主动除冰系统来解决这一问题。本文介绍了一种智能混合(被动和主动)除冰系统,它结合了低界面韧性涂层、印刷电路板加热器和冰检测微波传感器。研究发现,涂层与冰之间的界面韧性与温度有关,可以通过嵌入式加热器进行调节。因此,无需熔化界面即可实现除冰。低界面韧性涂层和周期性加热器的协同组合,产生了比全覆盖加热器系统更高的除冰功率密度。这种混合除冰系统还表现出对反复结冰/除冰、机械磨损、户外暴露和化学污染的耐久性。此外,还设计并实现了一种非接触式平面微波谐振器传感器,用于在涂层下方运行时精确检测表面是否存在水或冰,进一步提高了系统的能源效率。使用大型(最大1米)结冰界面展示了智能涂层的可扩展性。总体而言,这里设计的智能混合系统在除冰方面实现了范式转变,无需进行能耗高昂的界面熔化就能有效地使表面无冰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecb/9433454/5d59c31b0ae9/41467_2022_32852_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验