Suppr超能文献

细菌中生物发光萤光素合成的传感揭示了鞘翅目动物中半胱氨酸依赖的醌解毒途径。

Biosensing firefly luciferin synthesis in bacteria reveals a cysteine-dependent quinone detoxification route in Coleoptera.

机构信息

Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos, Sorocaba, Brazil.

Departament of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, Brazil.

出版信息

Sci Rep. 2022 Aug 31;12(1):14815. doi: 10.1038/s41598-022-17205-z.

Abstract

Luciferin biosynthetic origin and alternative biological functions during the evolution of beetles remain unknown. We have set up a bioluminescent sensing method for luciferin synthesis from cysteine and benzoquinone using E. coli and Pichia pastoris expressing the bright Amydetes vivianii firefly and P. termitilluminans click beetle luciferases. In the presence of D-cysteine and benzoquinone, intense bioluminescence is quickly produced, indicating the expected formation of D-luciferin. Starting with L-cysteine and benzoquinone, the bioluminescence is weaker and delayed, indicating that bacteria produce L-luciferin, and then racemize it to D-luciferin in the presence of endogenous esterases, CoA and luciferase. In bacteria the p-benzoquinone toxicity (I ~ 25 µM) is considerably reduced in the presence of cysteine, maintaining cell viability at 3.6 mM p-benzoquinone concomitantly with the formation of luciferin. Transcriptional analysis showed the presence of gene products involved with the sclerotization/tanning in the photogenic tissues, suggesting a possible link between these pathways and bioluminescence. The lack of two enzymes involved with the last steps of these pathways, indicate the possible accumulation of toxic quinone intermediates in the lanterns. These results and the abundance of cysteine producing enzymes suggest that luciferin first appeared as a detoxification byproduct of cysteine reaction with accumulated toxic quinone intermediates during the evolution of sclerotization/tanning in Coleoptera.

摘要

关于甲虫在进化过程中荧光素的生物合成起源和替代生物学功能仍然未知。我们建立了一种利用大肠杆菌和巴斯德毕赤酵母表达的亮彩阿米德氏萤火虫和 P. termitilluminans 叩头甲荧光素酶,从半胱氨酸和苯醌合成荧光素的生物发光感应方法。在存在 D-半胱氨酸和苯醌的情况下,会迅速产生强烈的生物发光,表明预期形成了 D-荧光素。从 L-半胱氨酸和苯醌开始,生物发光较弱且延迟,表明细菌产生 L-荧光素,然后在内源性酯酶、CoA 和荧光素酶的存在下将其外消旋化为 D-荧光素。在细菌中,半胱氨酸的存在可显著降低 p-苯醌的毒性(I~25 μM),同时伴随着荧光素的形成,使细胞在 3.6 mM p-苯醌存在下保持存活。转录分析显示,在发光组织中存在与硬化/鞣制相关的基因产物,表明这些途径与生物发光之间可能存在联系。缺乏与这些途径最后步骤相关的两种酶表明,在灯笼中可能积累了有毒的醌中间产物。这些结果和丰富的半胱氨酸产生酶表明,荧光素最初可能是在鞘翅目昆虫的硬化/鞣制进化过程中,半胱氨酸与积累的有毒醌中间产物反应的解毒副产物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验