Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Neurobiology, Duke University, Durham, NC, USA.
Nature. 2022 Sep;609(7927):560-568. doi: 10.1038/s41586-022-05144-8. Epub 2022 Aug 31.
Central oscillators are primordial neural circuits that generate and control rhythmic movements. Mechanistic understanding of these circuits requires genetic identification of the oscillator neurons and their synaptic connections to enable targeted electrophysiological recording and causal manipulation during behaviours. However, such targeting remains a challenge with mammalian systems. Here we delimit the oscillator circuit that drives rhythmic whisking-a motor action that is central to foraging and active sensing in rodents. We found that the whisking oscillator consists of parvalbumin-expressing inhibitory neurons located in the vibrissa intermediate reticular nucleus (vIRt) in the brainstem. vIRt neurons receive descending excitatory inputs and form recurrent inhibitory connections among themselves. Silencing vIRt neurons eliminated rhythmic whisking and resulted in sustained vibrissae protraction. In vivo recording of opto-tagged vIRt neurons in awake mice showed that these cells spike tonically when animals are at rest, and transition to rhythmic bursting at the onset of whisking, suggesting that rhythm generation is probably the result of network dynamics, as opposed to intrinsic cellular properties. Notably, ablating inhibitory synaptic inputs to vIRt neurons quenched their rhythmic bursting, impaired the tonic-to-bursting transition and abolished regular whisking. Thus, the whisking oscillator is an all-inhibitory network and recurrent synaptic inhibition has a key role in its rhythmogenesis.
中央振荡器是产生和控制节律运动的原始神经回路。要深入了解这些回路的机制,需要对振荡器神经元及其突触连接进行遗传鉴定,以便在行为过程中进行有针对性的电生理记录和因果操纵。然而,对于哺乳动物系统来说,这种靶向操作仍然是一个挑战。在这里,我们限定了驱动节律性刷动的振荡器回路——这是啮齿动物觅食和主动感知的核心运动动作。我们发现,刷动振荡器由脑桥中表达 Parvalbumin 的抑制性神经元组成,位于触须中间网状核(vIRt)中。vIRt 神经元接收下行兴奋性输入,并在自身之间形成反复抑制性连接。沉默 vIRt 神经元会消除节律性刷动,并导致持续的触须伸展。在清醒小鼠中对光标记的 vIRt 神经元进行体内记录显示,当动物处于休息状态时,这些细胞会持续放电,而在刷动开始时会过渡到节律性爆发,这表明节律产生可能是网络动态的结果,而不是内在细胞特性的结果。值得注意的是,消除 vIRt 神经元的抑制性突触输入会抑制其节律性爆发,损害从持续放电到爆发的转变,并消除有规律的刷动。因此,刷动振荡器是一个全抑制性网络,反复的突触抑制在其节律产生中起着关键作用。