Suppr超能文献

搅拌器振荡器电路。

The whisking oscillator circuit.

机构信息

Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Neurobiology, Duke University, Durham, NC, USA.

出版信息

Nature. 2022 Sep;609(7927):560-568. doi: 10.1038/s41586-022-05144-8. Epub 2022 Aug 31.

Abstract

Central oscillators are primordial neural circuits that generate and control rhythmic movements. Mechanistic understanding of these circuits requires genetic identification of the oscillator neurons and their synaptic connections to enable targeted electrophysiological recording and causal manipulation during behaviours. However, such targeting remains a challenge with mammalian systems. Here we delimit the oscillator circuit that drives rhythmic whisking-a motor action that is central to foraging and active sensing in rodents. We found that the whisking oscillator consists of parvalbumin-expressing inhibitory neurons located in the vibrissa intermediate reticular nucleus (vIRt) in the brainstem. vIRt neurons receive descending excitatory inputs and form recurrent inhibitory connections among themselves. Silencing vIRt neurons eliminated rhythmic whisking and resulted in sustained vibrissae protraction. In vivo recording of opto-tagged vIRt neurons in awake mice showed that these cells spike tonically when animals are at rest, and transition to rhythmic bursting at the onset of whisking, suggesting that rhythm generation is probably the result of network dynamics, as opposed to intrinsic cellular properties. Notably, ablating inhibitory synaptic inputs to vIRt neurons quenched their rhythmic bursting, impaired the tonic-to-bursting transition and abolished regular whisking. Thus, the whisking oscillator is an all-inhibitory network and recurrent synaptic inhibition has a key role in its rhythmogenesis.

摘要

中央振荡器是产生和控制节律运动的原始神经回路。要深入了解这些回路的机制,需要对振荡器神经元及其突触连接进行遗传鉴定,以便在行为过程中进行有针对性的电生理记录和因果操纵。然而,对于哺乳动物系统来说,这种靶向操作仍然是一个挑战。在这里,我们限定了驱动节律性刷动的振荡器回路——这是啮齿动物觅食和主动感知的核心运动动作。我们发现,刷动振荡器由脑桥中表达 Parvalbumin 的抑制性神经元组成,位于触须中间网状核(vIRt)中。vIRt 神经元接收下行兴奋性输入,并在自身之间形成反复抑制性连接。沉默 vIRt 神经元会消除节律性刷动,并导致持续的触须伸展。在清醒小鼠中对光标记的 vIRt 神经元进行体内记录显示,当动物处于休息状态时,这些细胞会持续放电,而在刷动开始时会过渡到节律性爆发,这表明节律产生可能是网络动态的结果,而不是内在细胞特性的结果。值得注意的是,消除 vIRt 神经元的抑制性突触输入会抑制其节律性爆发,损害从持续放电到爆发的转变,并消除有规律的刷动。因此,刷动振荡器是一个全抑制性网络,反复的突触抑制在其节律产生中起着关键作用。

相似文献

1
The whisking oscillator circuit.
Nature. 2022 Sep;609(7927):560-568. doi: 10.1038/s41586-022-05144-8. Epub 2022 Aug 31.
4
Parvalbumin neurons and cortical coding of dynamic stimuli: a network model.
J Neurophysiol. 2025 Jul 1;134(1):53-66. doi: 10.1152/jn.00283.2024. Epub 2025 May 13.
7
Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus.
J Neurosci. 2023 Feb 22;43(8):1281-1297. doi: 10.1523/JNEUROSCI.1969-22.2023. Epub 2023 Jan 9.
8
Biomechanical simplification of the motor control of whisking.
bioRxiv. 2025 Jun 21:2025.06.21.660818. doi: 10.1101/2025.06.21.660818.
9
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
10
Increased presynaptic excitability in a migraine with aura mutation.
Brain. 2024 Feb 1;147(2):680-697. doi: 10.1093/brain/awad326.

引用本文的文献

1
Biomechanical simplification of the motor control of whisking.
bioRxiv. 2025 Jun 21:2025.06.21.660818. doi: 10.1101/2025.06.21.660818.
2
A genetically defined pontine nucleus essential for ingestion in mice.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2411174122. doi: 10.1073/pnas.2411174122. Epub 2025 Jul 15.
3
A toolbox for ablating excitatory and inhibitory synapses.
Elife. 2025 Apr 29;13:RP103757. doi: 10.7554/eLife.103757.
4
Whisking and locomotion are jointly represented in superior colliculus neurons.
PLoS Biol. 2025 Apr 7;23(4):e3003087. doi: 10.1371/journal.pbio.3003087. eCollection 2025 Apr.
5
A toolbox for ablating excitatory and inhibitory synapses.
bioRxiv. 2025 Jan 31:2024.09.23.614589. doi: 10.1101/2024.09.23.614589.
6
Latent circuit inference from heterogeneous neural responses during cognitive tasks.
Nat Neurosci. 2025 Mar;28(3):665-675. doi: 10.1038/s41593-025-01869-7. Epub 2025 Feb 10.
7
Assessing Cross-Contamination in Spike-Sorted Electrophysiology Data.
eNeuro. 2024 Aug 28;11(8). doi: 10.1523/ENEURO.0554-23.2024. Print 2024 Aug.
8
Coincident development and synchronization of sleep-dependent delta in the cortex and medulla.
Curr Biol. 2024 Jun 17;34(12):2570-2579.e5. doi: 10.1016/j.cub.2024.04.064. Epub 2024 May 20.
9
Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior.
Cell Rep. 2024 May 28;43(5):114199. doi: 10.1016/j.celrep.2024.114199. Epub 2024 May 9.
10
Cerebellar state estimation enables resilient coupling across behavioural domains.
Sci Rep. 2024 Mar 19;14(1):6641. doi: 10.1038/s41598-024-56811-x.

本文引用的文献

1
Constructing an adult orofacial premotor atlas in Allen mouse CCF.
Elife. 2021 Apr 27;10:e67291. doi: 10.7554/eLife.67291.
2
Visualizing anatomically registered data with brainrender.
Elife. 2021 Mar 19;10:e65751. doi: 10.7554/eLife.65751.
3
4
The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.
Cell. 2020 May 14;181(4):936-953.e20. doi: 10.1016/j.cell.2020.04.007. Epub 2020 May 7.
5
Multiple Rhythm-Generating Circuits Act in Tandem with Pacemaker Properties to Control the Start and Speed of Locomotion.
Neuron. 2020 Mar 18;105(6):1048-1061.e4. doi: 10.1016/j.neuron.2019.12.030. Epub 2020 Jan 22.
6
Cortical layer-specific critical dynamics triggering perception.
Science. 2019 Aug 9;365(6453). doi: 10.1126/science.aaw5202. Epub 2019 Jul 18.
8
9
Breathing matters.
Nat Rev Neurosci. 2018 Jun;19(6):351-367. doi: 10.1038/s41583-018-0003-6.
10
A craniofacial-specific monosynaptic circuit enables heightened affective pain.
Nat Neurosci. 2017 Dec;20(12):1734-1743. doi: 10.1038/s41593-017-0012-1. Epub 2017 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验