Suppr超能文献

搅拌器振荡器电路。

The whisking oscillator circuit.

机构信息

Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Neurobiology, Duke University, Durham, NC, USA.

出版信息

Nature. 2022 Sep;609(7927):560-568. doi: 10.1038/s41586-022-05144-8. Epub 2022 Aug 31.

Abstract

Central oscillators are primordial neural circuits that generate and control rhythmic movements. Mechanistic understanding of these circuits requires genetic identification of the oscillator neurons and their synaptic connections to enable targeted electrophysiological recording and causal manipulation during behaviours. However, such targeting remains a challenge with mammalian systems. Here we delimit the oscillator circuit that drives rhythmic whisking-a motor action that is central to foraging and active sensing in rodents. We found that the whisking oscillator consists of parvalbumin-expressing inhibitory neurons located in the vibrissa intermediate reticular nucleus (vIRt) in the brainstem. vIRt neurons receive descending excitatory inputs and form recurrent inhibitory connections among themselves. Silencing vIRt neurons eliminated rhythmic whisking and resulted in sustained vibrissae protraction. In vivo recording of opto-tagged vIRt neurons in awake mice showed that these cells spike tonically when animals are at rest, and transition to rhythmic bursting at the onset of whisking, suggesting that rhythm generation is probably the result of network dynamics, as opposed to intrinsic cellular properties. Notably, ablating inhibitory synaptic inputs to vIRt neurons quenched their rhythmic bursting, impaired the tonic-to-bursting transition and abolished regular whisking. Thus, the whisking oscillator is an all-inhibitory network and recurrent synaptic inhibition has a key role in its rhythmogenesis.

摘要

中央振荡器是产生和控制节律运动的原始神经回路。要深入了解这些回路的机制,需要对振荡器神经元及其突触连接进行遗传鉴定,以便在行为过程中进行有针对性的电生理记录和因果操纵。然而,对于哺乳动物系统来说,这种靶向操作仍然是一个挑战。在这里,我们限定了驱动节律性刷动的振荡器回路——这是啮齿动物觅食和主动感知的核心运动动作。我们发现,刷动振荡器由脑桥中表达 Parvalbumin 的抑制性神经元组成,位于触须中间网状核(vIRt)中。vIRt 神经元接收下行兴奋性输入,并在自身之间形成反复抑制性连接。沉默 vIRt 神经元会消除节律性刷动,并导致持续的触须伸展。在清醒小鼠中对光标记的 vIRt 神经元进行体内记录显示,当动物处于休息状态时,这些细胞会持续放电,而在刷动开始时会过渡到节律性爆发,这表明节律产生可能是网络动态的结果,而不是内在细胞特性的结果。值得注意的是,消除 vIRt 神经元的抑制性突触输入会抑制其节律性爆发,损害从持续放电到爆发的转变,并消除有规律的刷动。因此,刷动振荡器是一个全抑制性网络,反复的突触抑制在其节律产生中起着关键作用。

相似文献

1
The whisking oscillator circuit.搅拌器振荡器电路。
Nature. 2022 Sep;609(7927):560-568. doi: 10.1038/s41586-022-05144-8. Epub 2022 Aug 31.
8
Biomechanical simplification of the motor control of whisking.触须运动控制的生物力学简化
bioRxiv. 2025 Jun 21:2025.06.21.660818. doi: 10.1101/2025.06.21.660818.

引用本文的文献

1
Biomechanical simplification of the motor control of whisking.触须运动控制的生物力学简化
bioRxiv. 2025 Jun 21:2025.06.21.660818. doi: 10.1101/2025.06.21.660818.
2
A genetically defined pontine nucleus essential for ingestion in mice.一种对小鼠摄食至关重要的基因定义的脑桥核。
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2411174122. doi: 10.1073/pnas.2411174122. Epub 2025 Jul 15.
4
Whisking and locomotion are jointly represented in superior colliculus neurons.上丘神经元共同表征了快速扫视和运动。
PLoS Biol. 2025 Apr 7;23(4):e3003087. doi: 10.1371/journal.pbio.3003087. eCollection 2025 Apr.

本文引用的文献

4
The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.艾伦鼠脑通用坐标系:一个 3D 参考图谱。
Cell. 2020 May 14;181(4):936-953.e20. doi: 10.1016/j.cell.2020.04.007. Epub 2020 May 7.
6
Cortical layer-specific critical dynamics triggering perception.皮层层特异性关键动力学触发感知。
Science. 2019 Aug 9;365(6453). doi: 10.1126/science.aaw5202. Epub 2019 Jul 18.
9
Breathing matters.呼吸至关重要。
Nat Rev Neurosci. 2018 Jun;19(6):351-367. doi: 10.1038/s41583-018-0003-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验