Suppr超能文献

一种用于机器学习的病变标记方法及对四只猪关节 CT 扫描中骨软骨病的一些新观察。

A method for labelling lesions for machine learning and some new observations on osteochondrosis in computed tomographic scans of four pig joints.

机构信息

Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Equine Section, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.

Animalia AS, Lørenveien 38, 0585, Oslo, Norway.

出版信息

BMC Vet Res. 2022 Aug 31;18(1):328. doi: 10.1186/s12917-022-03426-x.

Abstract

BACKGROUND

Osteochondrosis is a major cause of leg weakness in pigs. Selection against osteochondrosis is currently based on manual scoring of computed tomographic (CT) scans for the presence of osteochondrosis manifesta lesions. It would be advantageous if osteochondrosis could be diagnosed automatically, through artificial intelligence methods using machine learning. The aim of this study was to describe a method for labelling articular osteochondrosis lesions in CT scans of four pig joints to guide development of future machine learning algorithms, and to report new observations made during the labelling process. The shoulder, elbow, stifle and hock joints were evaluated in CT scans of 201 pigs.

RESULTS

Six thousand two hundred fifty osteochondrosis manifesta and cyst-like lesions were labelled in 201 pigs representing a total volume of 211,721.83 mm. The per-joint prevalence of osteochondrosis ranged from 64.7% in the hock to 100% in the stifle joint. The lowest number of lesions was found in the hock joint at 208 lesions, and the highest number of lesions was found in the stifle joint at 4306 lesions. The mean volume per lesion ranged from 26.21 mm in the shoulder to 42.06 mm in the elbow joint. Pigs with the highest number of lesions had small lesions, whereas pigs with few lesions frequently had large lesions, that have the potential to become clinically significant. In the stifle joint, lesion number had a moderate negative correlation with mean lesion volume at r = - 0.54, p < 0.001.

CONCLUSIONS

The described labelling method is an important step towards developing a machine learning algorithm that will enable automated diagnosis of osteochondrosis manifesta and cyst-like lesions. Both lesion number and volume should be considered during breeding selection. The apparent inverse relationship between lesion number and volume warrants further investigation.

摘要

背景

骨软骨病是猪腿无力的主要原因。目前,针对骨软骨病的选择是基于对 CT 扫描中是否存在骨软骨病表现病变进行手动评分。如果可以通过使用机器学习的人工智能方法自动诊断骨软骨病,那将是有利的。本研究的目的是描述一种在猪的四个关节的 CT 扫描中标记关节骨软骨病病变的方法,以指导未来机器学习算法的开发,并报告在标记过程中发现的新观察结果。在 201 头猪的 CT 扫描中评估了肩部、肘部、膝关节和跗关节。

结果

在 201 头猪中标记了 6250 个骨软骨病表现和囊肿样病变,代表 211721.83mm 的总体积。每个关节的骨软骨病患病率从跗关节的 64.7%到膝关节的 100%不等。在跗关节中发现的病变数量最少,为 208 个,在膝关节中发现的病变数量最多,为 4306 个。每个病变的平均体积范围从肩部的 26.21mm 到肘部的 42.06mm。病变数量最多的猪通常有小病变,而病变数量较少的猪通常有大病变,这些病变有可能变得具有临床意义。在膝关节中,病变数量与平均病变体积之间呈中度负相关,相关系数 r=-0.54,p<0.001。

结论

所描述的标记方法是开发能够自动诊断骨软骨病表现和囊肿样病变的机器学习算法的重要步骤。在选择繁殖时应同时考虑病变数量和体积。病变数量和体积之间的明显反比关系需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f9/9429582/816112ecabb0/12917_2022_3426_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验