School of Medicine, Nankai University, Tianjin, China.
Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China.
Curr Pharm Des. 2022;28(34):2842-2854. doi: 10.2174/1381612828666220831085608.
Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes significant physical and psychological damage. Although researchers have gained a better understanding of the mechanisms of RA, there are still difficulties in diagnosing and treating RA. We applied a data mining approach based on machine learning algorithms to explore new RA biomarkers and local immune cell status.
We extracted six RA synovial microarray datasets from the GEO database and used bioinformatics to obtain differentially expressed genes (DEGs) and associated functional enrichment pathways. In addition, we identified potential RA diagnostic markers by machine learning strategies and validated their diagnostic ability for early RA and established RA, respectively. Next, CIBERSORT and ssGSEA analyses explored alterations in synovium-infiltrating immune cell subpopulations and immune cell functions in the RA synovium. Moreover, we examined the correlation between biomarkers and immune cells to understand their immune-related molecular mechanisms in the pathogenesis of RA.
We obtained 373 DEGs (232 upregulated and 141 downregulated genes) between RA and healthy controls. Enrichment analysis revealed a robust correlation between RA and immune response. Comprehensive analysis indicated PSMB9, CXCL13, and LRRC15 were possible potential markers. PSMB9 (AUC: 0.908, 95% CI: 0.853-0.954) and CXCL13 (AUC: 0.890, 95% CI: 0.836-0.937) also showed great diagnostic ability in validation dataset. Infiltrations of 16 kinds of the immune cell were changed, with macrophages being the predominant infiltrating cell type. Most proinflammatory pathways in immune cell function were activated in RA. The correlation analysis found the strongest positive correlation between CXCL13 and plasma cells, PSMB9, and macrophage M1.
There is a robust correlation between RA and local immune response. The immune-related CXCL13 and PSMB9 were identified as potential diagnostic markers for RA based on a machine learning approach. Further in-depth exploration of the target genes and associated immune cells can deepen the understanding of RA pathophysiological processes and provide new insights into diagnosing and treating RA.
类风湿关节炎(RA)是一种慢性炎症性疾病,会导致严重的身体和心理损伤。尽管研究人员对 RA 的发病机制有了更好的理解,但在诊断和治疗 RA 方面仍存在困难。我们应用了一种基于机器学习算法的数据挖掘方法,以探索新的 RA 生物标志物和局部免疫细胞状态。
我们从 GEO 数据库中提取了六个 RA 滑膜微阵列数据集,并使用生物信息学方法获得差异表达基因(DEGs)和相关的功能富集途径。此外,我们通过机器学习策略确定了潜在的 RA 诊断标志物,并分别验证了它们对早期 RA 和确诊 RA 的诊断能力。接下来,CIBERSORT 和 ssGSEA 分析探讨了 RA 滑膜中浸润免疫细胞亚群和免疫细胞功能的改变。此外,我们还研究了生物标志物与免疫细胞之间的相关性,以了解它们在 RA 发病机制中的免疫相关分子机制。
我们在 RA 与健康对照组之间获得了 373 个差异表达基因(232 个上调和 141 个下调基因)。富集分析显示 RA 与免疫反应之间存在很强的相关性。综合分析表明 PSMB9、CXCL13 和 LRRC15 可能是潜在的潜在标志物。PSMB9(AUC:0.908,95%CI:0.853-0.954)和 CXCL13(AUC:0.890,95%CI:0.836-0.937)在验证数据集中也表现出了很好的诊断能力。16 种免疫细胞的浸润发生了改变,其中巨噬细胞是主要的浸润细胞类型。RA 中大多数免疫细胞功能的促炎途径被激活。相关性分析发现 CXCL13 与浆细胞、PSMB9 和巨噬细胞 M1 之间存在最强的正相关。
RA 与局部免疫反应之间存在很强的相关性。基于机器学习方法,我们将免疫相关的 CXCL13 和 PSMB9 确定为 RA 的潜在诊断标志物。对靶基因和相关免疫细胞的进一步深入研究可以加深对 RA 病理生理过程的理解,并为 RA 的诊断和治疗提供新的思路。