Suppr超能文献

基于 BP 神经网络的资本资产定价模型在电子商务融资中的应用。

Application of Capital Asset Pricing Model Based on BP Neural Network in E-commerce Financing.

机构信息

School of Finance and Economics, Shenzhen Institute of Information Technology, Shenzhen 518000, China.

出版信息

Comput Intell Neurosci. 2022 Aug 22;2022:5654271. doi: 10.1155/2022/5654271. eCollection 2022.

Abstract

The study explores the risks and benefits of investors in e-commerce financing under the background of "double carbon" to maximize investors' interests and reduce investment losses. The Back Propagation Neural Network (BPNN) algorithm model of e-commerce enterprise financing based on the Capital Asset Pricing Model (CAPM) is mainly studied. First, according to the worldwide literature, the theoretical concept and principle of the CAPM are deeply studied and analyzed. Then, from the perspective of "double carbon," with the financing risk characteristics of listed companies responding to the "double carbon" policy as samples, the CAPM model of e-commerce financing under the BPNN algorithm is established. Next, the BPNN is used to input the financing samples of e-commerce enterprises and train the model. The verification experiment of the capital asset financing model of e-commerce enterprises is further conducted. The experimental results show that the model error is the smallest when the number of neurons in the hidden layer reaches about 20. Therefore, the number of neurons in the hidden layer of the model is set to 20. When the number of iterations in training reaches 3000, the financing risk model begins to show a convergence trend. Finally, it can be determined that the number of adaptive iterations of the model is 3000. When the learning rate is 0.03, the oscillation of the model is smaller and stabler, so the model learning rate is 0.03, and the final model error is only 9.96 × 10. Based on this, e-commerce enterprises can achieve the purpose using this model to adjust the coefficient in financing in the future. The results have certain reference significance for e-commerce financing risk assessment under a "double carbon" background.

摘要

本研究旨在探讨“双碳”背景下电子商务融资投资者的风险与收益,以最大化投资者利益,降低投资损失。主要研究基于资本资产定价模型(CAPM)的电子商务企业融资反向传播神经网络(BPNN)算法模型。首先,根据全球文献,深入研究和分析了 CAPM 的理论概念和原理。然后,从“双碳”的角度出发,以响应“双碳”政策的上市公司融资风险特征为样本,建立了 BPNN 算法下的电子商务融资 CAPM 模型。接下来,使用 BPNN 输入电子商务企业的融资样本并训练模型。进一步对电子商务企业资本资产融资模型进行验证实验。实验结果表明,当隐藏层神经元数量达到约 20 时,模型误差最小。因此,模型隐藏层的神经元数量设置为 20。当训练中的迭代次数达到 3000 时,融资风险模型开始呈现收敛趋势。最后,可以确定模型的自适应迭代次数为 3000。当学习率为 0.03 时,模型的波动更小且更稳定,因此模型学习率为 0.03,最终模型误差仅为 9.96×10。在此基础上,电子商务企业未来可以使用该模型调整融资中的系数,达到目的。研究结果对“双碳”背景下电子商务融资风险评估具有一定的参考意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd79/9423998/012e5e8fa7c3/CIN2022-5654271.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验