Suppr超能文献

范可尼贫血途径抑制剂作为卵巢癌的潜在抗肿瘤药物

Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer.

作者信息

Taylor Sarah J, Arends Mark J, Langdon Simon P

机构信息

Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK.

出版信息

Explor Target Antitumor Ther. 2020;1(1):26-52. doi: 10.37349/etat.2020.00003. Epub 2020 Feb 29.

Abstract

The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.

摘要

范可尼贫血(FA)通路是细胞DNA损伤修复的重要机制,其作用是清除有毒的DNA链间交联。这在卵巢癌和其他癌症的背景下尤为重要,这些癌症广泛依赖产生链间交联的铂类化疗作为标准治疗方法。这些癌症通常对初始治疗反应良好,但会复发耐药性疾病并上调DNA损伤修复通路。因此,FA通路作为旨在提高铂类化疗疗效并逆转肿瘤对其耐药性的治疗靶点备受关注。在本综述中,我们讨论了在理解FA通路进行链间交联修复机制方面的最新进展,以及该通路组成部分作为治疗药物靶点的潜力。然后,我们重点关注抑制剂开发的现状,涵盖广谱抑制剂的特性以及用于鉴定新型小分子抑制剂的高通量筛选方法。我们还将FA通路与其他DNA损伤修复通路之间的合成致死性作为一种治疗方法进行了探讨。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538f/9400734/b624f95831e1/etat-01-10023-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验