Department of Oncology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States.
Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States.
Mutat Res Rev Mutat Res. 2015 Jan-Mar;763:258-66. doi: 10.1016/j.mrrev.2014.11.005. Epub 2014 Nov 20.
Bifunctional alkylating and platinum based drugs are chemotherapeutic agents used to treat cancer. These agents induce DNA adducts via formation of intrastrand or interstrand (ICL) DNA crosslinks, and DNA lesions of the ICL type are particularly toxic as they block DNA replication and/or DNA transcription. However, the therapeutic efficacies of these drugs are frequently limited due to the cancer cell's enhanced ability to repair and tolerate these toxic DNA lesions. This ability to tolerate and survive the DNA damage is accomplished by a set of specialized low fidelity DNA polymerases called translesion synthesis (TLS) polymerases since high fidelity DNA polymerases are unable to replicate the damaged DNA template. TLS is a crucial initial step in ICL repair as it synthesizes DNA across the lesion thus preparing the damaged DNA template for repair by the homologous recombination (HR) pathway and Fanconi anemia (FA) network, processes critical for ICL repair. Here we review the molecular features and functional roles of TLS polymerases, discuss the collaborative interactions and cross-regulation of the TLS DNA damage tolerance pathway, the FA network and the BRCA-dependent HRR pathway, and the impact of TLS hyperactivation on development of chemoresistance. Finally, since TLS hyperactivation results from overexpression of Rad6/Rad18 ubiquitinating enzymes (fundamental components of the TLS pathway), increased PCNA ubiquitination, and/or increased recruitment of TLS polymerases, the potential benefits of selectively targeting critical components of the TLS pathway for enhancing anti-cancer therapeutic efficacy and curtailing chemotherapy-induced mutagenesis are also discussed.
双功能烷化剂和铂类药物是用于治疗癌症的化疗药物。这些药物通过形成链内或链间(ICL)DNA 交联来诱导 DNA 加合物,并且 ICL 型 DNA 损伤特别有毒,因为它们会阻断 DNA 复制和/或 DNA 转录。然而,由于癌细胞增强了修复和耐受这些有毒 DNA 损伤的能力,这些药物的治疗效果常常受到限制。这种耐受和生存 DNA 损伤的能力是通过一组称为跨损伤合成(TLS)聚合酶的专门的低保真度 DNA 聚合酶来实现的,因为高保真度 DNA 聚合酶无法复制受损的 DNA 模板。TLS 是 ICL 修复的关键初始步骤,因为它在损伤部位合成 DNA,从而为同源重组(HR)途径和范可尼贫血(FA)网络修复受损的 DNA 模板做好准备,这些过程对于 ICL 修复至关重要。在这里,我们回顾了 TLS 聚合酶的分子特征和功能作用,讨论了 TLS DNA 损伤耐受途径、FA 网络和 BRCA 依赖性 HRR 途径的协作相互作用和交叉调节,以及 TLS 过度激活对化学耐药性发展的影响。最后,由于 TLS 过度激活是由于 Rad6/Rad18 泛素化酶(TLS 途径的基本组成部分)的过度表达、PCNA 泛素化增加和/或 TLS 聚合酶的募集增加引起的,因此还讨论了选择性靶向 TLS 途径关键组件以增强抗癌治疗效果和减少化疗诱导的突变的潜在益处。