Suppr超能文献

使用无透镜成像和深度学习辅助定量凝集检测法进行即时 SARS-CoV-2 感测。

Point-of-care SARS-CoV-2 sensing using lens-free imaging and a deep learning-assisted quantitative agglutination assay.

机构信息

Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.

College of Medicine, University of Arizona, Tucson, Arizona 85724, USA.

出版信息

Lab Chip. 2022 Sep 27;22(19):3744-3754. doi: 10.1039/d2lc00289b.

Abstract

The persistence of the global COVID-19 pandemic caused by the SARS-CoV-2 virus has continued to emphasize the need for point-of-care (POC) diagnostic tests for viral diagnosis. The most widely used tests, lateral flow assays used in rapid antigen tests, and reverse-transcriptase real-time polymerase chain reaction (RT-PCR), have been instrumental in mitigating the impact of new waves of the pandemic, but fail to provide both sensitive and rapid readout to patients. Here, we present a portable lens-free imaging system coupled with a particle agglutination assay as a novel biosensor for SARS-CoV-2. This sensor images and quantifies individual microbeads undergoing agglutination through a combination of computational imaging and deep learning as a way to detect levels of SARS-CoV-2 in a complex sample. SARS-CoV-2 pseudovirus in solution is incubated with acetyl cholinesterase 2 (ACE2)-functionalized microbeads then loaded into an inexpensive imaging chip. The sample is imaged in a portable in-line lens-free holographic microscope and an image is reconstructed from a pixel superresolved hologram. Images are analyzed by a deep-learning algorithm that distinguishes microbead agglutination from cell debris and viral particle aggregates, and agglutination is quantified based on the network output. We propose an assay procedure using two images which results in the accurate determination of viral concentrations greater than the limit of detection (LOD) of 1.27 × 10 copies per mL, with a tested dynamic range of 3 orders of magnitude, without yet reaching the upper limit. This biosensor can be used for fast SARS-CoV-2 diagnosis in low-resource POC settings and has the potential to mitigate the spread of future waves of the pandemic.

摘要

由 SARS-CoV-2 病毒引起的全球 COVID-19 大流行持续存在,这继续强调了即时护理(POC)诊断测试用于病毒诊断的必要性。最广泛使用的测试,即快速抗原检测中使用的侧向流动测定法,以及逆转录实时聚合酶链反应(RT-PCR),在减轻新一波大流行的影响方面发挥了重要作用,但无法为患者提供敏感和快速的读数。在这里,我们提出了一种与粒子聚集检测相结合的无透镜成像系统,作为一种用于 SARS-CoV-2 的新型生物传感器。该传感器通过计算成像和深度学习相结合来对发生聚集的单个微球进行成像和定量,以检测复杂样本中 SARS-CoV-2 的水平。溶液中的 SARS-CoV-2 假病毒与乙酰胆碱酯酶 2(ACE2)功能化的微球孵育,然后加载到廉价的成像芯片中。将样品在便携式在线无透镜全息显微镜中成像,并从像素超分辨率全息图重建图像。通过深度学习算法对图像进行分析,该算法可区分微球聚集与细胞碎片和病毒颗粒聚集体,并根据网络输出对聚集进行定量。我们提出了一种使用两个图像的检测程序,该程序可准确确定病毒浓度大于 1.27×10 拷贝/ml 的检测限(LOD),测试的动态范围为 3 个数量级,尚未达到上限。这种生物传感器可用于资源有限的 POC 环境中的快速 SARS-CoV-2 诊断,并有潜力减轻未来大流行波的传播。

相似文献

2
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.
3
PD-LAMP smartphone detection of SARS-CoV-2 on chip.PD-LAMP 智能手机芯片检测 SARS-CoV-2。
Anal Chim Acta. 2022 Apr 22;1203:339702. doi: 10.1016/j.aca.2022.339702. Epub 2022 Mar 9.
9
Rapid and accurate agglutination-based testing for SARS-CoV-2 antibodies.基于快速和准确的凝集反应的 SARS-CoV-2 抗体检测。
Cell Rep Methods. 2021 Jun 21;1(2):100011. doi: 10.1016/j.crmeth.2021.100011. Epub 2021 May 12.

引用本文的文献

本文引用的文献

7
A Comprehensive Review of Detection Methods for SARS-CoV-2.新型冠状病毒检测方法的全面综述
Microorganisms. 2021 Jan 22;9(2):232. doi: 10.3390/microorganisms9020232.
10
Considerations for diagnostic COVID-19 tests.考虑用于诊断 COVID-19 的检测。
Nat Rev Microbiol. 2021 Mar;19(3):171-183. doi: 10.1038/s41579-020-00461-z. Epub 2020 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验