Kang Seung Kyu, Kim Kyoohyun, Jeong Jinsoo, Hong Sunghee, Park YongKeun, Shin Jonghwa
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Hologram Research Center, Korea Electronics Technology Institute, World Cup Buk-ro 54 gil, Mapo-gu, Seoul 03924, Republic of Korea.
Biomed Opt Express. 2024 Aug 15;15(9):5238-5250. doi: 10.1364/BOE.528698. eCollection 2024 Sep 1.
Accurate optical characterization of microscopic objects is crucial in academic research, product development, and clinical diagnosis. We present a method for obtaining full and high-dynamic range, angle-resolved light scattering attributes of microparticles, enabling distinction of variations in both overall morphology and detailed internal structures. This method overcomes previous limitations in observable scattering angles and dynamic range of signals through computationally assisted three-dimensional holotomography. This advancement is significant for particles spanning tens of wavelengths, such as human erythrocytes, which have historically posed measurement challenges due to faint side-scattering signals indicative of their complex interiors. Our technique addresses three key challenges in optical side-scattering analysis: limited observational angular range, reliance on simplified computational models, and low signal-to-noise ratios in both experimental and computational evaluations. We incorporate three-dimensional tomographic complex refractive index data from Fourier-transform light scattering into a tailored finite-difference time-domain simulation space. This approach facilitates precise near-to-far-field transformations. The process yields complete full-angle scattering phase functions, crucial for particles like Plasmodium falciparum-parasitized erythrocytes, predominantly involved in forward scattering. The resultant scattering data exhibit an extreme dynamic range exceeding 100 dB at various incident angles of a He-Ne laser. These findings have the potential to develop point-of-care, cost-effective, and rapid malaria diagnostic tools, inspiring further clinical and research applications in microparticle scattering.
对微观物体进行精确的光学表征在学术研究、产品开发和临床诊断中至关重要。我们提出了一种获取微粒全动态范围、角度分辨光散射属性的方法,能够区分整体形态和详细内部结构的变化。该方法通过计算辅助三维全息断层成像克服了以往在可观测散射角度和信号动态范围方面的限制。这一进展对于跨度为数十个波长的粒子(如人类红细胞)具有重要意义,由于其微弱的侧向散射信号表明其内部结构复杂,这些粒子在历史上一直存在测量挑战。我们的技术解决了光学侧向散射分析中的三个关键挑战:观测角度范围有限、依赖简化的计算模型以及实验和计算评估中的低信噪比。我们将傅里叶变换光散射的三维断层复折射率数据纳入定制的时域有限差分模拟空间。这种方法有助于精确的近场到远场变换。该过程产生完整的全角散射相位函数,这对于主要参与前向散射的恶性疟原虫寄生红细胞等粒子至关重要。在氦氖激光的各种入射角下,所得散射数据显示出超过100 dB的极宽动态范围。这些发现有可能开发出即时护理、经济高效且快速的疟疾诊断工具,激发在微粒散射方面的进一步临床和研究应用。