Suppr超能文献

人工智能应用于心肌病:是时候临床应用了吗?

Artificial Intelligence Applied to Cardiomyopathies: Is It Time for Clinical Application?

作者信息

Kim Kyung-Hee, Kwon Joon-Myung, Pereira Tara, Attia Zachi I, Pereira Naveen L

机构信息

Internal Medicine, Department of Cardiology, Incheon Sejong Hospital, Incheon, South Korea.

Department of Cardiovascular Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.

出版信息

Curr Cardiol Rep. 2022 Nov;24(11):1547-1555. doi: 10.1007/s11886-022-01776-4. Epub 2022 Sep 1.

Abstract

PURPOSE OF REVIEW

Artificial intelligence (AI) techniques have the potential to remarkably change the practice of cardiology in order to improve and optimize outcomes in heart failure and specifically cardiomyopathies, offering us novel tools to interpret data and make clinical decisions. The aim of this review is to describe the contemporary state of AI and digital health applied to cardiomyopathies as well as to define a potential pivotal role of its application by physicians in clinical practice.

RECENT FINDINGS

Many studies have been undertaken in recent years on cardiomyopathy screening especially using AI-enhanced electrocardiography (ECG). Even with mild left ventricular (LV) dysfunction, AI-ECG screening for amyloidosis, hypertrophic cardiomyopathy, or dilated cardiomyopathy is now feasible. Introduction of AI-ECG in routine clinical care has resulted in higher detection of LV systolic dysfunction; however, clinical research on a broader scale with diverse populations is necessary and ongoing. In the area of cardiac-imaging, AI automatically assesses the thickness and characteristics of myocardium to differentiate cardiomyopathies, but research on its prognostic capability has yet to be conducted. AI is also being applied to cardiomyopathy genomics, especially to predict pathogenicity of variants and identify whether these variants are clinically actionable. While the implementation of AI in the diagnosis and treatment of cardiomyopathies is still in its infancy, an ever-growing clinical research strategy will ascertain the clinical utility of these AI tools to help improve diagnosis of and outcomes in cardiomyopathies. We also need to standardize the tools used to monitor the performance of AI-based systems which can then be used to expedite decision-making and rectify any hidden biases. Given its potential important role in clinical practice, healthcare providers need to familiarize themselves with the promise and limitations of this technology.

摘要

综述目的

人工智能(AI)技术有可能显著改变心脏病学的实践,以改善和优化心力衰竭尤其是心肌病的治疗结果,为我们提供解释数据和做出临床决策的新工具。本综述的目的是描述应用于心肌病的AI和数字健康的当代状况,并确定其在临床实践中医生应用的潜在关键作用。

最新发现

近年来,人们对心肌病筛查进行了许多研究,特别是使用人工智能增强心电图(ECG)。即使是轻度左心室(LV)功能障碍,现在通过人工智能心电图筛查淀粉样变性、肥厚型心肌病或扩张型心肌病也是可行的。在常规临床护理中引入人工智能心电图可提高左心室收缩功能障碍的检测率;然而,需要并正在进行更广泛人群的临床研究。在心脏成像领域,人工智能可自动评估心肌厚度和特征以区分心肌病,但对其预后能力的研究尚未开展。人工智能也被应用于心肌病基因组学,特别是预测变异的致病性并确定这些变异是否具有临床可操作性。虽然人工智能在心肌病诊断和治疗中的应用仍处于起步阶段,但不断发展的临床研究策略将确定这些人工智能工具的临床效用,以帮助改善心肌病的诊断和治疗结果。我们还需要规范用于监测基于人工智能系统性能的工具,这些工具随后可用于加快决策制定并纠正任何潜在偏差。鉴于其在临床实践中的潜在重要作用,医疗保健提供者需要熟悉这项技术的前景和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验