Suppr超能文献

心肌病领域的人工智能进展:对致心律失常性心肌病诊断和管理的影响。

Artificial Intelligence Advancements in Cardiomyopathies: Implications for Diagnosis and Management of Arrhythmogenic Cardiomyopathy.

作者信息

Salavati Arman, van der Wilt C Nina, Calore Martina, van Es René, Rampazzo Alessandra, van der Harst Pim, van Steenbeek Frank G, van Tintelen J Peter, Harakalova Magdalena, Te Riele Anneline S J M

机构信息

Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands.

European Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart, Utrecht, The Netherlands.

出版信息

Curr Heart Fail Rep. 2024 Dec 11;22(1):5. doi: 10.1007/s11897-024-00688-4.

Abstract

PURPOSE OF REVIEW

This review aims to explore the emerging potential of artificial intelligence (AI) in refining risk prediction, clinical diagnosis, and treatment stratification for cardiomyopathies, with a specific emphasis on arrhythmogenic cardiomyopathy (ACM).

RECENT FINDINGS

Recent developments highlight the capacity of AI to construct sophisticated models that accurately distinguish affected from non-affected cardiomyopathy patients. These AI-driven approaches not only offer precision in risk prediction and diagnostics but also enable early identification of individuals at high risk of developing cardiomyopathy, even before symptoms occur. These models have the potential to utilise diverse clinical input datasets such as electrocardiogram recordings, cardiac imaging, and other multi-modal genetic and omics datasets. Despite their current underrepresentation in literature, ACM diagnosis and risk prediction are expected to greatly benefit from AI computational capabilities, as has been the case for other cardiomyopathies. As AI-based models improve, larger and more complicated datasets can be combined. These more complex integrated datasets with larger sample sizes will contribute to further pathophysiological insights, better disease recognition, risk prediction, and improved patient outcomes.

摘要

综述目的

本综述旨在探讨人工智能(AI)在改善心肌病风险预测、临床诊断和治疗分层方面的新潜力,特别关注致心律失常性心肌病(ACM)。

最新发现

近期进展凸显了AI构建精确模型的能力,该模型能够准确区分患心肌病和未患心肌病的患者。这些由AI驱动的方法不仅在风险预测和诊断方面提供了精准度,还能在症状出现前早期识别出有患心肌病高风险的个体。这些模型有潜力利用多种临床输入数据集,如心电图记录、心脏成像以及其他多模态遗传和组学数据集。尽管目前在文献中对ACM的诊断和风险预测的描述较少,但与其他心肌病一样,预计ACM将从AI计算能力中大幅受益。随着基于AI的模型不断改进,可以合并更大、更复杂的数据集。这些样本量更大、更复杂的综合数据集将有助于深入了解病理生理学、更好地识别疾病、进行风险预测并改善患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验