Suppr超能文献

通过综合生物信息学分析和机器学习策略鉴定阿尔茨海默病的诊断生物标志物

Identification of diagnostic biomarkers in Alzheimer's disease by integrated bioinformatic analysis and machine learning strategies.

作者信息

Jin Boru, Cheng Xiaoqin, Fei Guoqiang, Sang Shaoming, Zhong Chunjiu

机构信息

Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.

Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.

出版信息

Front Aging Neurosci. 2023 Jun 26;15:1169620. doi: 10.3389/fnagi.2023.1169620. eCollection 2023.

Abstract

BACKGROUND

Alzheimer's disease (AD) is the most prevalent form of dementia, and is becoming one of the most burdening and lethal diseases. More useful biomarkers for diagnosing AD and reflecting the disease progression are in need and of significance.

METHODS

The integrated bioinformatic analysis combined with machine-learning strategies was applied for exploring crucial functional pathways and identifying diagnostic biomarkers of AD. Four datasets (GSE5281, GSE131617, GSE48350, and GSE84422) with samples of AD frontal cortex are integrated as experimental datasets, and another two datasets (GSE33000 and GSE44772) with samples of AD frontal cortex were used to perform validation analyses. Functional Correlation enrichment analyses were conducted based on Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the Reactome database to reveal AD-associated biological functions and key pathways. Four models were employed to screen the potential diagnostic biomarkers, including one bioinformatic analysis of Weighted gene co-expression network analysis (WGCNA)and three machine-learning algorithms: Least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF) analysis. The correlation analysis was performed to explore the correlation between the identified biomarkers with CDR scores and Braak staging.

RESULTS

The pathways of the immune response and oxidative stress were identified as playing a crucial role during AD. Thioredoxin interacting protein (TXNIP), early growth response 1 (EGR1), and insulin-like growth factor binding protein 5 (IGFBP5) were screened as diagnostic markers of AD. The diagnostic efficacy of TXNIP, EGR1, and IGFBP5 was validated with corresponding AUCs of 0.857, 0.888, and 0.856 in dataset GSE33000, 0.867, 0.909, and 0.841 in dataset GSE44770. And the AUCs of the combination of these three biomarkers as a diagnostic tool for AD were 0.954 and 0.938 in the two verification datasets.

CONCLUSION

The pathways of immune response and oxidative stress can play a crucial role in the pathogenesis of AD. TXNIP, EGR1, and IGFBP5 are useful biomarkers for diagnosing AD and their mRNA level may reflect the development of the disease by correlation with the CDR scores and Breaking staging.

摘要

背景

阿尔茨海默病(AD)是最常见的痴呆形式,正成为负担最重和最致命的疾病之一。需要且有意义的是更多用于诊断AD和反映疾病进展的有用生物标志物。

方法

应用综合生物信息学分析结合机器学习策略来探索关键功能通路并识别AD的诊断生物标志物。将四个包含AD额叶皮质样本的数据集(GSE5281、GSE131617、GSE48350和GSE84422)整合为实验数据集,并使用另外两个包含AD额叶皮质样本的数据集(GSE33000和GSE44772)进行验证分析。基于基因本体论(GO)、京都基因与基因组百科全书(KEGG)和Reactome数据库进行功能相关性富集分析,以揭示与AD相关的生物学功能和关键通路。采用四种模型筛选潜在的诊断生物标志物,包括一种加权基因共表达网络分析(WGCNA)的生物信息学分析和三种机器学习算法:最小绝对收缩和选择算子(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林(RF)分析。进行相关性分析以探索所识别的生物标志物与CDR评分和Braak分期之间的相关性。

结果

免疫反应和氧化应激通路被确定在AD发病过程中起关键作用。硫氧还蛋白相互作用蛋白(TXNIP)、早期生长反应1(EGR1)和胰岛素样生长因子结合蛋白5(IGFBP5)被筛选为AD的诊断标志物。在数据集GSE33000中,TXNIP、EGR1和IGFBP5的诊断效能通过相应的曲线下面积(AUC)分别为0.857、0.888和0.856得到验证,在数据集GSE44770中分别为0.867、0.909和0.841。在两个验证数据集中,这三种生物标志物组合作为AD诊断工具的AUC分别为0.954和0.938。

结论

免疫反应和氧化应激通路在AD发病机制中可起关键作用。TXNIP、EGR1和IGFBP5是诊断AD的有用生物标志物,其mRNA水平可能通过与CDR评分和Braak分期的相关性反映疾病的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0851/10331604/11f0add56091/fnagi-15-1169620-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验