Suppr超能文献

用于不同计数水平低计数PET去噪的统一噪声感知网络

Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.

作者信息

Xie Huidong, Liu Qiong, Zhou Bo, Chen Xiongchao, Guo Xueqi, Wang Hanzhong, Li Biao, Rominger Axel, Shi Kuangyu, Liu Chi

机构信息

Department of Biomedical Engineering, Yale University.

Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.

Abstract

As PET imaging is accompanied by substantial radiation exposure and cancer risk, reducing radiation dose in PET scans is an important topic. However, low-count PET scans often suffer from high image noise, which can negatively impact image quality and diagnostic performance. Recent advances in deep learning have shown great potential for recovering underlying signal from noisy counterparts. However, neural networks trained on a specific noise level cannot be easily generalized to other noise levels due to different noise amplitude and variances. To obtain optimal denoised results, we may need to train multiple networks using data with different noise levels. But this approach may be infeasible in reality due to limited data availability. Denoising dynamic PET images presents additional challenge due to tracer decay and continuously changing noise levels across dynamic frames. To address these issues, we propose a Unified Noise-aware Network (UNN) that combines multiple sub-networks with varying denoising power to generate optimal denoised results regardless of the input noise levels. Evaluated using large-scale data from two medical centers with different vendors, presented results showed that the UNN can consistently produce promising denoised results regardless of input noise levels, and demonstrate superior performance over networks trained on single noise level data, especially for extremely low-count data.

摘要

由于正电子发射断层扫描(PET)成像伴随着大量的辐射暴露和癌症风险,降低PET扫描中的辐射剂量是一个重要课题。然而,低计数PET扫描常常存在高图像噪声问题,这会对图像质量和诊断性能产生负面影响。深度学习的最新进展已显示出从噪声图像中恢复潜在信号的巨大潜力。然而,由于噪声幅度和方差不同,在特定噪声水平上训练的神经网络不易推广到其他噪声水平。为了获得最佳的去噪结果,我们可能需要使用具有不同噪声水平的数据训练多个网络。但由于数据可用性有限,这种方法在实际中可能不可行。由于示踪剂衰变以及动态帧之间不断变化的噪声水平,对动态PET图像进行去噪带来了额外的挑战。为了解决这些问题,我们提出了一种统一噪声感知网络(UNN),该网络结合了多个具有不同去噪能力的子网络,以生成最佳的去噪结果,而不管输入噪声水平如何。使用来自两个不同供应商的医疗中心的大规模数据进行评估,结果表明,无论输入噪声水平如何,UNN都能始终如一地产生有前景的去噪结果,并且相对于在单噪声水平数据上训练的网络表现出卓越的性能,尤其是对于极低计数的数据。

相似文献

1
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.
2
A personalized deep learning denoising strategy for low-count PET images.
Phys Med Biol. 2022 Jul 13;67(14). doi: 10.1088/1361-6560/ac783d.
4
Dose reduction and image enhancement in micro-CT using deep learning.
Med Phys. 2023 Sep;50(9):5643-5656. doi: 10.1002/mp.16385. Epub 2023 Apr 5.
5
Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision.
Med Image Anal. 2025 Feb;100:103391. doi: 10.1016/j.media.2024.103391. Epub 2024 Nov 20.
6
Convolutional neural networks for improving image quality with noisy PET data.
EJNMMI Res. 2020 Sep 21;10(1):105. doi: 10.1186/s13550-020-00695-1.
7
Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
Med Phys. 2024 Feb;51(2):1289-1312. doi: 10.1002/mp.16331. Epub 2023 Mar 10.
8
FedFTN: Personalized federated learning with deep feature transformation network for multi-institutional low-count PET denoising.
Med Image Anal. 2023 Dec;90:102993. doi: 10.1016/j.media.2023.102993. Epub 2023 Oct 6.
10
SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging.
Front Nucl Med. 2024 Nov 19;4:1469490. doi: 10.3389/fnume.2024.1469490. eCollection 2024.

引用本文的文献

1
DUAL PROMPTING FOR DIVERSE COUNT-LEVEL PET DENOISING.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980695. Epub 2025 May 12.
2
A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.
Med Image Anal. 2025 Jul 30;106:103729. doi: 10.1016/j.media.2025.103729.
3
Dual Prompting for Diverse Count-level PET Denoising.
ArXiv. 2025 May 5:arXiv:2505.03037v1.
4
POUR-Net: A Population-Prior-Aided Over-Under-Representation Network for Low-Count PET Attenuation Map Generation.
IEEE Trans Med Imaging. 2025 Apr;44(4):1699-1710. doi: 10.1109/TMI.2024.3514925. Epub 2025 Apr 3.
5
Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning.
Eur J Nucl Med Mol Imaging. 2025 Jun;52(7):2577-2588. doi: 10.1007/s00259-025-07086-5. Epub 2025 Feb 6.
6
Recent Breakthroughs in PET-CT Multimodality Imaging: Innovations and Clinical Impact.
Bioengineering (Basel). 2024 Nov 30;11(12):1213. doi: 10.3390/bioengineering11121213.
7
Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision.
Med Image Anal. 2025 Feb;100:103391. doi: 10.1016/j.media.2024.103391. Epub 2024 Nov 20.
8
Deep learning-based PET image denoising and reconstruction: a review.
Radiol Phys Technol. 2024 Mar;17(1):24-46. doi: 10.1007/s12194-024-00780-3. Epub 2024 Feb 6.

本文引用的文献

1
Federated Transfer Learning for Low-dose PET Denoising: A Pilot Study with Simulated Heterogeneous Data.
IEEE Trans Radiat Plasma Med Sci. 2023 Mar;7(3):284-295. doi: 10.1109/trpms.2022.3194408. Epub 2022 Jul 27.
2
Segmentation-Free PVC for Cardiac SPECT Using a Densely-Connected Multi-Dimensional Dynamic Network.
IEEE Trans Med Imaging. 2023 May;42(5):1325-1336. doi: 10.1109/TMI.2022.3226604. Epub 2023 May 2.
3
5
A personalized deep learning denoising strategy for low-count PET images.
Phys Med Biol. 2022 Jul 13;67(14). doi: 10.1088/1361-6560/ac783d.
6
Increasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction.
J Nucl Cardiol. 2023 Feb;30(1):86-100. doi: 10.1007/s12350-022-02972-z. Epub 2022 May 4.
7
A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET.
Eur J Nucl Med Mol Imaging. 2022 May;49(6):1843-1856. doi: 10.1007/s00259-021-05644-1. Epub 2021 Dec 24.
8
Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance.
Eur J Nucl Med Mol Imaging. 2022 Apr;49(5):1508-1522. doi: 10.1007/s00259-021-05614-7. Epub 2021 Nov 15.
10
MDPET: A Unified Motion Correction and Denoising Adversarial Network for Low-Dose Gated PET.
IEEE Trans Med Imaging. 2021 Nov;40(11):3154-3164. doi: 10.1109/TMI.2021.3076191. Epub 2021 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验