iHuman Institute, ShanghaiTech University, Shanghai, China.
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
PLoS One. 2022 Mar 24;17(3):e0265567. doi: 10.1371/journal.pone.0265567. eCollection 2022.
The mesoscale description of the subcellular organization informs about cellular mechanisms in disease state. However, applications of soft X-ray tomography (SXT), an important approach for characterizing organelle organization, are limited by labor-intensive manual segmentation. Here we report a pipeline for automated segmentation and systematic analysis of SXT tomograms. Our approach combines semantic and first-applied instance segmentation to produce separate organelle masks with high Dice and Recall indexes, followed by analysis of organelle localization based on the radial distribution function. We demonstrated this technique by investigating the organization of INS-1E pancreatic β-cell organization under different treatments at multiple time points. Consistent with a previous analysis of a similar dataset, our results revealed the impact of glucose stimulation on the localization and molecular density of insulin vesicles and mitochondria. This pipeline can be extended to SXT tomograms of any cell type to shed light on the subcellular rearrangements under different drug treatments.
亚细胞组织的介观描述提供了疾病状态下细胞机制的信息。然而,软 X 射线断层扫描(SXT)作为一种重要的细胞器组织特征方法,其应用受到劳动密集型手动分割的限制。在此,我们报告了一个用于自动化分割和系统分析 SXT 断层扫描的流水线。我们的方法结合了语义和首次应用实例分割,以生成具有高 Dice 和召回索引的单独细胞器掩模,然后基于径向分布函数分析细胞器定位。我们通过在多个时间点研究不同处理下 INS-1E 胰腺β细胞组织的结构,验证了该技术。与之前对类似数据集的分析一致,我们的结果揭示了葡萄糖刺激对胰岛素囊泡和线粒体定位和分子密度的影响。该流水线可扩展到任何细胞类型的 SXT 断层扫描,以揭示不同药物处理下的亚细胞重排。