IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France.
U2IS Dept., ENSTA, Institut Polytechnique Paris, Inria Flowers Team, 828, Boulevard des Maréchaux 91762 Palaiseau Cedex, France; Segula Technologies, Parc d'activité de Pissaloup, Trappes, France; Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France.
Neural Netw. 2022 Nov;155:95-118. doi: 10.1016/j.neunet.2022.08.002. Epub 2022 Aug 6.
During the learning process, a child develops a mental representation of the task he or she is learning. A Machine Learning algorithm develops also a latent representation of the task it learns. We investigate the development of the knowledge construction of an artificial agent through the analysis of its behavior, i.e., its sequences of moves while learning to perform the Tower of Hanoï (TOH) task. The TOH is a well-known task in experimental contexts to study the problem-solving processes and one of the fundamental processes of children's knowledge construction about their world. We position ourselves in the field of explainable reinforcement learning for developmental robotics, at the crossroads of cognitive modeling and explainable AI. Our main contribution proposes a 3-step methodology named Implicit Knowledge Extraction with eXplainable Artificial Intelligence (IKE-XAI) to extract the implicit knowledge, in form of an automaton, encoded by an artificial agent during its learning. We showcase this technique to solve and explain the TOH task when researchers have only access to moves that represent observational behavior as in human-machine interaction. Therefore, to extract the agent acquired knowledge at different stages of its training, our approach combines: first, a Q-learning agent that learns to perform the TOH task; second, a trained recurrent neural network that encodes an implicit representation of the TOH task; and third, an XAI process using a post-hoc implicit rule extraction algorithm to extract finite state automata. We propose using graph representations as visual and explicit explanations of the behavior of the Q-learning agent. Our experiments show that the IKE-XAI approach helps understanding the development of the Q-learning agent behavior by providing a global explanation of its knowledge evolution during learning. IKE-XAI also allows researchers to identify the agent's Aha! moment by determining from what moment the knowledge representation stabilizes and the agent no longer learns.
在学习过程中,儿童会对他们正在学习的任务形成心理表征。机器学习算法也会对它所学习的任务形成潜在的表示。我们通过分析其行为来研究人工代理的知识构建的发展,即它在学习执行汉诺塔(TOH)任务时的移动序列。TOH 是实验情境中用于研究问题解决过程的一个著名任务,也是儿童对其世界的知识构建的基本过程之一。我们在可解释强化学习的领域中定位自己,处于认知建模和可解释 AI 的交叉点。我们的主要贡献提出了一种名为 IKE-XAI 的三步方法论,用于提取隐含知识,以自动机的形式表示人工代理在学习过程中编码的隐含知识。我们展示了这种技术来解决和解释 TOH 任务,当研究人员只能访问代表人机交互中的观察行为的移动时。因此,为了提取代理在其训练的不同阶段获得的知识,我们的方法结合了:首先,一个 Q-learning 代理,用于学习执行 TOH 任务;其次,一个经过训练的递归神经网络,用于编码 TOH 任务的隐含表示;最后,使用事后隐含规则提取算法的 XAI 过程,以提取有限状态自动机。我们提出使用图表示作为 Q-learning 代理行为的可视化和显式解释。我们的实验表明,IKE-XAI 方法通过提供其学习过程中知识演变的全局解释,有助于理解 Q-learning 代理行为的发展。IKE-XAI 还允许研究人员通过确定知识表示何时稳定且代理不再学习来确定代理的顿悟时刻。