Suppr超能文献

基于电子健康记录的心力衰竭患者死亡或严重失代偿的深度学习预测

Electronic Health Record-Based Deep Learning Prediction of Death or Severe Decompensation in Heart Failure Patients.

作者信息

McGilvray Martha M O, Heaton Jeffrey, Guo Aixia, Masood M Faraz, Cupps Brian P, Damiano Marci, Pasque Michael K, Foraker Randi

机构信息

Division of Cardiothoracic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.

Sever Institute, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

JACC Heart Fail. 2022 Sep;10(9):637-647. doi: 10.1016/j.jchf.2022.05.010. Epub 2022 Jul 6.

Abstract

BACKGROUND

Surgical mechanical ventricular assistance and cardiac replacement therapies, although life-saving in many heart failure (HF) patients, remain high-risk. Despite this, the difficulty in timely identification of medical therapy nonresponders and the dire consequences of nonresponse have fueled early, less selective surgical referral. Patients who would have ultimately responded to medical therapy are therefore subjected to the risk and life disruption of surgical therapy.

OBJECTIVES

The purpose of this study was to develop deep learning models based upon commonly-available electronic health record (EHR) variables to assist clinicians in the timely and accurate identification of HF medical therapy nonresponders.

METHODS

The study cohort consisted of all patients (age 18 to 90 years) admitted to a single tertiary care institution from January 2009 through December 2018, with International Classification of Disease HF diagnostic coding. Ensemble deep learning models employing time-series and densely-connected networks were developed from standard EHR data. The positive class included all observations resulting in severe progression (death from any cause or referral for HF surgical intervention) within 1 year.

RESULTS

A total of 79,850 distinct admissions from 52,265 HF patients met observation criteria and contributed >350 million EHR datapoints for model training, validation, and testing. A total of 20% of model observations fit positive class criteria. The model C-statistic was 0.91.

CONCLUSIONS

The demonstrated accuracy of EHR-based deep learning model prediction of 1-year all-cause death or referral for HF surgical therapy supports clinical relevance. EHR-based deep learning models have considerable potential to assist HF clinicians in improving the application of advanced HF surgical therapy in medical therapy nonresponders.

摘要

背景

外科机械心室辅助和心脏置换疗法虽然能挽救许多心力衰竭(HF)患者的生命,但仍然具有高风险。尽管如此,难以及时识别对药物治疗无反应者以及无反应的严重后果促使了更早、更缺乏选择性的外科转诊。因此,那些最终本可对药物治疗产生反应的患者却要承受外科治疗的风险和生活干扰。

目的

本研究的目的是基于常用的电子健康记录(EHR)变量开发深度学习模型,以协助临床医生及时、准确地识别HF药物治疗无反应者。

方法

研究队列包括2009年1月至2018年12月入住一家三级医疗机构的所有患者(年龄18至90岁),具有国际疾病分类HF诊断编码。从标准EHR数据中开发了采用时间序列和密集连接网络的集成深度学习模型。阳性类别包括所有在1年内导致严重病情进展(任何原因导致的死亡或HF外科干预转诊)的观察结果。

结果

来自52265名HF患者的79850次不同入院符合观察标准,并为模型训练、验证和测试贡献了超过3.5亿个EHR数据点。共有20%的模型观察结果符合阳性类别标准。模型的C统计量为0.91。

结论

基于EHR的深度学习模型对1年全因死亡或HF外科治疗转诊预测的准确性证明了其临床相关性。基于EHR的深度学习模型在协助HF临床医生改善晚期HF外科治疗在药物治疗无反应者中的应用方面具有相当大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验