Wu Chao, Fang Wenzhong, Cheng Qunfeng, Wan Jing, Wen Rui, Wang Yang, Song Yanlin, Li Mingzhu
School of Transportation Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.
Angew Chem Int Ed Engl. 2022 Oct 24;61(43):e202210970. doi: 10.1002/anie.202210970. Epub 2022 Sep 26.
Defects at the interfaces of perovskite (PVK) thin films are the main factors responsible for instability and low photoelectric conversion efficiency (PCE) of PVK solar cells (PSCs). Here, a SnO -MXene composite electron transport layer (ETL) is used in PSCs to improve interfacial contact and passivate defects at the SnO /perovskite interface. The introduced MXene regulates SnO dispersion and induces a vertical growth of PVK. The lattice matching of MXene and perovskite suppresses the concentration of interfacial stress, thereby obtaining a perovskite film with low defects. Compared with SnO -based device, the PCE of SnO -MXene-based device is improved by 15 % and its short-circuit current is up to 25.07 mA cm . Furthermore, unencapsulated device maintained about 90 % of its initial efficiency even after 500 h of storage at 30-40 % relative humidity in ambient air. The composite ETL strategy provides a route to engineer interfacial passivation between metal halide perovskites and ETLs.
钙钛矿(PVK)薄膜界面处的缺陷是导致PVK太阳能电池(PSC)不稳定和光电转换效率(PCE)低的主要因素。在此,一种SnO-MXene复合电子传输层(ETL)被用于PSC中,以改善界面接触并钝化SnO/钙钛矿界面处的缺陷。引入的MXene调节SnO的分散性并诱导PVK垂直生长。MXene与钙钛矿的晶格匹配抑制了界面应力的集中,从而获得了低缺陷的钙钛矿薄膜。与基于SnO的器件相比,基于SnO-MXene的器件的PCE提高了15%,其短路电流高达25.07 mA cm 。此外,即使在环境空气中相对湿度为30-40%的条件下储存500 h后,未封装的器件仍保持其初始效率的约90%。复合ETL策略为设计金属卤化物钙钛矿与ETL之间的界面钝化提供了一条途径。