Iloeje Chukwunwike O, Xavier Alinson Santos, Graziano Diane, Atkins John, Sun Kyle, Cresko Joe, Supekar Sarang D
Energy Systems Division, Argonne National Laboratory, Lemont, IL 60439, USA.
Decision and Infrastructure Sciences Division, Argonne National Laboratory, Lemont, IL 60439, USA.
iScience. 2022 Aug 5;25(9):104830. doi: 10.1016/j.isci.2022.104830. eCollection 2022 Sep 16.
Critical materials such as rare earth underpin technologies needed for a decarbonized global economy. Recycling can mitigate the supply risks created by the increasing demand and net import dependence, and enable a circular economy for critical materials. In this study, we analyze the feasibility and life-cycle impacts of recovering critical materials from spent nickel metal hydride batteries from hybrid electric vehicles in the U.S., accounting for stocks, battery scrappage, and end-of-life reverse logistics, given uncertain future availability scenarios. Our results show that the total collection and recycling costs depend strongly on future battery availability, with marginal costs exceeding marginal revenues when the availability of spent batteries declines. We quantify the potential of recycling to reduce primary imports, as well as the accompanying climate change and resource impacts. We explore the underlying reverse logistics infrastructure required for battery recycling and evaluate strategies for reducing associated capital investment risk.
稀土等关键材料支撑着全球脱碳经济所需的技术。回收利用可以减轻因需求增加和净进口依赖所带来的供应风险,并推动关键材料的循环经济发展。在本研究中,考虑到未来供应情况的不确定性,我们分析了从美国混合动力电动汽车废旧镍氢电池中回收关键材料的可行性及其生命周期影响,涵盖了库存、电池报废以及报废后逆向物流等方面。我们的研究结果表明,总收集和回收成本在很大程度上取决于未来电池的供应情况,当废旧电池供应减少时,边际成本会超过边际收益。我们量化了回收利用对减少初级进口的潜力,以及随之而来的气候变化和资源影响。我们探讨了电池回收所需的潜在逆向物流基础设施,并评估了降低相关资本投资风险的策略。