Suppr超能文献

层状锡硫属化合物SnS和SnSe:晶格热导率基准及热电优值

Layered Tin Chalcogenides SnS and SnSe: Lattice Thermal Conductivity Benchmarks and Thermoelectric Figure of Merit.

作者信息

Rundle Jordan, Leoni Stefano

机构信息

Materials Discovery Group, School of Chemistry, Cardiff University, C10 3AT Cardiff, U.K.

出版信息

J Phys Chem C Nanomater Interfaces. 2022 Aug 25;126(33):14036-14046. doi: 10.1021/acs.jpcc.2c02401. Epub 2022 Aug 16.

Abstract

Tin sulfide (SnS) and tin selenide (SnSe) are attractive materials for thermoelectric conversion applications. Favorable small band gap, high carrier mobility, large Seebeck coefficient, and remarkably low lattice thermal conductivity are a consequence of their anisotropic crystal structure of symmetry , made of corrugated, black phosphorus-like layers. Their internal lattice dynamics combined with chemical bond softening in going from SnS to SnSe make for subtle effects on lattice thermal conductivity. Reliable prediction of phonon transport for these materials must therefore include many-body effects. Using first principles methods and a transferable tight-binding potential for frozen phonon calculations, here, we investigate the evolution of thermal lattice conductivity and thermoelectric figure of merit in -SnS and -SnSe, also including the high-temperature -SnS phase. We show how thermal conductivity lowering in SnS at higher temperatures is largely due to dynamic phonon softening ahead of the - structural phase transition. SnS becomes more similar to SnSe in its lifetime and mean free path profiles as it approaches its high-temperature phase. The latter nonetheless intrinsically constraints phonon group velocity modules, preventing SnS to overtake SnSe. Our analysis provides important insights and computational benchmarks for optimization of thermoelectric materials via a more efficient computational strategy compared to previous ab initio attempts, one that can be easily transferred to larger systems for further thermoelectric materials nanoengineering. The good description of anharmonicity at higher temperatures inherent to the tight-binding potential yields calculated lattice conductivity values that are in very good agreement with experiments.

摘要

硫化锡(SnS)和硒化锡(SnSe)是热电转换应用中颇具吸引力的材料。其具有有利的小带隙、高载流子迁移率、大塞贝克系数以及极低的晶格热导率,这是由其具有对称性的各向异性晶体结构所致,该结构由波纹状的类黑磷层构成。它们的内部晶格动力学,以及从SnS到SnSe过程中化学键的软化,对晶格热导率产生了微妙的影响。因此,对这些材料的声子输运进行可靠预测必须考虑多体效应。在此,我们使用第一性原理方法和用于冻结声子计算的可转移紧束缚势,研究了β-SnS和β-SnSe中晶格热导率和热电优值的演变,其中还包括高温α-SnS相。我们展示了SnS在较高温度下热导率降低主要是由于在α-β结构相变之前的动态声子软化。当SnS接近其高温α相时,其寿命和平均自由程分布变得与SnSe更为相似。然而,后者本质上限制了声子群速度模量,使得SnS无法超越SnSe。与之前的从头算尝试相比,我们的分析通过一种更高效的计算策略为热电材料的优化提供了重要见解和计算基准,这种策略可以轻松扩展到更大的系统,用于进一步的热电材料纳米工程。紧束缚势对较高温度下非谐性的良好描述使得计算得到的晶格电导率值与实验结果非常吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2122/9421910/72f90b6b5a0f/jp2c02401_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验