Suppr超能文献

可预测透明细胞肾细胞癌的不良预后。

can predict the poor prognosis of clear cell renal cell carcinoma.

作者信息

Gan Xinqiang, Liu Ruiji, Cheng Hong, Mao Weipu, Feng Ninghan, Chen Ming

机构信息

Department of Urology, People's Hospital of Putuo District, Shanghai, China.

Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.

出版信息

Front Oncol. 2022 Aug 16;12:882888. doi: 10.3389/fonc.2022.882888. eCollection 2022.

Abstract

PURPOSE

Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies of the urinary system. This study was conducted to discover a new target that can predict the prognosis and promote the treatment of ccRCC.

METHODS

The raw data were downloaded from the TCGA database, and the predictive value of for various clinicopathological features was verified in the following analysis. Then, we analyzed the potential involvement of in tumor immunity and obtained the possible pathways involving through GO/KEGG enrichment analysis and GSEA. We also further verified our findings in pathological specimens of ccRCC patients.

RESULTS

expression was significantly increased in ccRCC, which was associated with advanced clinicopathological characteristics. It was an independent prognostic factor for overall survival in 535 patients with ccRCC. Immune cell infiltration analysis revealed that expression was related to T lymphocyte infiltration of tumors and poor prognosis. Moreover, we performed relevant functional enrichment analyses of .

CONCLUSIONS

might play a significant role in the development and immune cell infiltration of ccRCC and serve as a valuable clinical prognostic biomarker.

摘要

目的

透明细胞肾细胞癌(ccRCC)是泌尿系统最常见的恶性肿瘤之一。本研究旨在发现一个能够预测ccRCC预后并促进其治疗的新靶点。

方法

从TCGA数据库下载原始数据,并在后续分析中验证其对各种临床病理特征的预测价值。然后,我们分析了其在肿瘤免疫中的潜在作用,并通过GO/KEGG富集分析和GSEA获得了与之相关的可能途径。我们还在ccRCC患者的病理标本中进一步验证了我们的发现。

结果

在ccRCC中表达显著增加,这与晚期临床病理特征相关。它是535例ccRCC患者总生存的独立预后因素。免疫细胞浸润分析显示,其表达与肿瘤的T淋巴细胞浸润及不良预后相关。此外,我们对其进行了相关的功能富集分析。

结论

可能在ccRCC的发生发展及免疫细胞浸润中起重要作用,并可作为有价值的临床预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4409/9424662/c00c8ec84eb2/fonc-12-882888-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验