Gu Cheng, Mao Yurong, Dong Haiyan, Cui Yu, Fu Ming
Department of Joint Surgery, The First Affifiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China.
Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affifiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China.
Indian J Orthop. 2022 Jun 20;56(9):1554-1564. doi: 10.1007/s43465-022-00644-1. eCollection 2022 Sep.
Measures of knee stability by symptoms, physical examination, and imaging do not accurately reflect the condition of knee movement. Therefore, this study aimed to introduce a model for assessing knee stability during walking in patients with knee osteoarthritis (OA).
Three dimensional(3D) gait analysis system was used to quantify the gait of patients and display the clinical diagnosis model of knee instability with nomogram to guide clinical diagnosis and treatment.
This cross-sectional study performed a 3D gait analysis in 93 participants with knee OA and 40 healthy control subjects. Multiple linear regression analysis investigated the correlation between gait parameters and knee extension/flexion stability. The predicting models were built applied multinomial logistic regression analysis and calibration plot, C-index, decision curve analysis, bootstrapping validation were used to assess the predicting nomograms' clinical usefulness and internal validation.
Multiple linear regression analysis indicated knee extension stability was correlated with walking speed (= 0.256, = 0.006), knee extensor strength ( = -0.196, = 0.03), static HKA ( = 0.218, P = 0.016), width of the femoral diaphysis (= -0.282, = 0.002) and WOMAC score ( = 0.281, = 0.002); however, knee flexion stability was correlated with walking speed ( = 0.340, < 0.001), knee flexor strength ( = -0.327, < 0.001), posterior tibial slope (PTS) ( = 0.291, < 0.001), knee flexion/extension range of motion (ROM) ( = 0.177, = 0.018) and HSS score ( = -0.173, = 0.028). We developed and internally validated a knee instability risk nomogram in patients with knee OA.
These results indicated that using the 3D motion analysis system is feasible to quantify knee instability. The current prediction models could serve as a reliable tool to quantify the possibility of knee instability in OA patients.
ChiCTR2100051302; Date of registration: Sep 18, 2021; retrospectively registered.
通过症状、体格检查和影像学对膝关节稳定性进行的评估并不能准确反映膝关节的运动状况。因此,本研究旨在引入一种模型,用于评估膝关节骨关节炎(OA)患者行走过程中的膝关节稳定性。
使用三维(3D)步态分析系统对患者的步态进行量化,并通过列线图展示膝关节不稳定的临床诊断模型,以指导临床诊断和治疗。
这项横断面研究对93例膝关节OA患者和40例健康对照者进行了3D步态分析。多元线性回归分析研究了步态参数与膝关节屈伸稳定性之间的相关性。应用多项逻辑回归分析建立预测模型,并使用校准图、C指数、决策曲线分析、自抽样验证来评估预测列线图的临床实用性和内部验证。
多元线性回归分析表明,膝关节伸展稳定性与步行速度(=0.256,=0.006)、膝关节伸肌力量(=-0.196,=0.03)、静态髋膝踝角(=0.218,P=0.016)、股骨干宽度(=-0.282,=0.002)和WOMAC评分(=0.281,=0.002)相关;然而,膝关节屈曲稳定性与步行速度(=0.340,<0.001)、膝关节屈肌力量(=-0.327,<0.001)、胫骨后倾角(PTS)(=0.291,<0.001)、膝关节屈伸活动范围(ROM)(=0.177,=0.018)和HSS评分(=-0.173,=0.028)相关。我们开发并在内部验证了膝关节OA患者膝关节不稳定风险列线图。
这些结果表明,使用3D运动分析系统量化膝关节不稳定是可行的。当前的预测模型可作为量化OA患者膝关节不稳定可能性的可靠工具。
试验注册号TRN:ChiCTR2100051302;注册日期:2021年9月18日;回顾性注册。