Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China.
Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
World Neurosurg. 2023 Oct;178:e472-e479. doi: 10.1016/j.wneu.2023.07.103. Epub 2023 Jul 26.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established and effective neurosurgical treatment for relieving motor symptoms in Parkinson disease. The localization of key brain structures is critical to the success of DBS surgery. However, in clinical practice, this process is heavily dependent on the radiologist's experience.
In this study, we propose an automatic localization method of key structures for STN-DBS surgery via prior-enhanced multi-object magnetic resonance imaging segmentation. We use the U-Net architecture for the multi-object segmentation, including STN, red nucleus, brain sulci, gyri, and ventricles. To address the challenge that only half of the brain sulci and gyri locate in the upper area, potentially causing interference in the lower area, we perform region of interest detection and ensemble joint processing to enhance the segmentation performance of brain sulci and gyri.
We evaluate the segmentation accuracy by comparing our method with other state-of-the-art machine learning segmentation methods. The experimental results show that our approach outperforms state-of-the-art methods in terms of segmentation performance. Moreover, our method provides effective visualization of key brain structures from a clinical application perspective and can reduce the segmentation time compared with manual delineation.
Our proposed method uses deep learning to achieve accurate segmentation of the key structures more quickly than and with comparable accuracy to human manual segmentation. Our method has the potential to improve the efficiency of surgical planning for STN-DBS.
深部脑刺激(DBS)丘脑底核(STN)是一种已确立且有效的神经外科治疗方法,可缓解帕金森病的运动症状。关键脑结构的定位对于 DBS 手术的成功至关重要。然而,在临床实践中,这一过程严重依赖于放射科医生的经验。
在这项研究中,我们通过预先增强的多目标磁共振成像分割提出了一种 STN-DBS 手术关键结构的自动定位方法。我们使用 U-Net 架构进行多目标分割,包括 STN、红核、脑沟、脑回和脑室。为了解决只有一半脑沟和脑回位于上区,可能会对下区造成干扰的问题,我们进行了感兴趣区域检测和联合处理,以增强脑沟和脑回的分割性能。
我们通过与其他最先进的机器学习分割方法进行比较来评估分割准确性。实验结果表明,我们的方法在分割性能方面优于最先进的方法。此外,从临床应用的角度来看,我们的方法提供了关键脑结构的有效可视化,并可以减少与手动勾画相比的分割时间。
我们提出的方法使用深度学习,比人工手动分割更快且具有可比的准确性来实现关键结构的精确分割。我们的方法有可能提高 STN-DBS 手术计划的效率。