Suppr超能文献

注意项共同出现的统计学习有助于视觉搜索。

Statistical learning of distractor co-occurrences facilitates visual search.

机构信息

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.

The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.

出版信息

J Vis. 2022 Sep 2;22(10):2. doi: 10.1167/jov.22.10.2.

Abstract

Visual search is facilitated by knowledge of the relationship between the target and the distractors, including both where the target is likely to be among the distractors and how it differs from the distractors. Whether the statistical structure among distractors themselves, unrelated to target properties, facilitates search is less well understood. Here, we assessed the benefit of distractor structure using novel shapes whose relationship to each other was learned implicitly during visual search. Participants searched for target items in arrays of shapes that comprised either four pairs of co-occurring distractor shapes (structured scenes) or eight distractor shapes randomly partitioned into four pairs on each trial (unstructured scenes). Across five online experiments (N = 1,140), we found that after a period of search training, participants were more efficient when searching for targets in structured than unstructured scenes. This structure benefit emerged independently of whether the position of the shapes within each pair was fixed or variable and despite participants having no explicit knowledge of the structured pairs they had seen. These results show that implicitly learned co-occurrence statistics between distractor shapes increases search efficiency. Increased efficiency in the rejection of regularly co-occurring distractors may contribute to the efficiency of visual search in natural scenes, where such regularities are abundant.

摘要

视觉搜索受到目标与干扰项之间关系的知识的促进,包括目标在干扰项中可能出现的位置以及它与干扰项的区别。干扰项本身之间的统计结构与目标属性无关,对搜索的促进作用了解较少。在这里,我们使用新颖的形状评估了干扰项结构的优势,这些形状在视觉搜索过程中是通过隐含学习彼此之间的关系的。参与者在形状的数组中搜索目标项目,这些数组要么由四对同时出现的干扰形状组成(结构化场景),要么在每次试验中随机分成四对的八个干扰形状(非结构化场景)。在五个在线实验(N=1140)中,我们发现,经过一段时间的搜索训练后,参与者在结构化场景中搜索目标比在非结构化场景中更有效率。这种结构优势独立于形状在每对中的位置是固定的还是可变的,尽管参与者对他们所看到的结构化对没有明确的知识。这些结果表明,干扰项形状之间隐含学习的共现统计数据提高了搜索效率。对经常共现的干扰项的拒绝效率的提高可能有助于自然场景中视觉搜索的效率,因为这种规律性在自然场景中很丰富。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41ca/9440606/5615be645c48/jovi-22-10-2-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验