Beijing Computational Science Research Center, Beijing, 100193, China.
Phys Rev Lett. 2022 Aug 19;129(8):086801. doi: 10.1103/PhysRevLett.129.086801.
Hot carriers generated by plasmonic damping have been suggested to promote photocatalysis, yet it remains unclear how the nonthermalized hot carriers dynamically activate and promote the energy transfer processes. Here, we present an Anderson-Newns model to describe the vibrational excitation and bond dissociation induced by plasmonic hot carriers. The nonthermal distribution of the hot carriers generated by plasmon damping is accounted for on equal footing with thermal carriers at a given temperature in the electron-molecule scattering. We found that the nonthermal electrons in the high energy region can, albeit in much smaller populations, provide an efficient and dominant channel for photodissociation especially in the low-temperature and quantum plasmon regime. Our model captures the wavelength dependence and reproduces the enhancement factors observed by experiments for oxygen dissociation on silver nanoparticles. It also paves a way to harvesting nonthermal plasmonic energy for photocatalysis in the quantum regime.
由等离子体阻尼产生的热载流子被认为可以促进光催化,但目前尚不清楚未热化的热载流子如何动态地激活和促进能量转移过程。在这里,我们提出了一个安德森-纽恩斯模型来描述由等离子体热载流子引起的振动激发和键断裂。在给定温度下,电子-分子散射中,与热载流子同等考虑由等离子体阻尼产生的热载流子的非热分布。我们发现,高能区的非热电子虽然在数量上要少得多,但可以为光解提供一个有效且主要的通道,特别是在低温和量子等离子体区域。我们的模型捕捉到了波长依赖性,并再现了实验观察到的银纳米粒子上氧解离的增强因子。它还为在量子区域用光催化收集非热等离子体能量铺平了道路。