Suppr超能文献

使用高光谱成像和光学轮廓术估计小鼠肿瘤模型的定量生理和形态组织参数。

Estimating quantitative physiological and morphological tissue parameters of murine tumor models using hyperspectral imaging and optical profilometry.

机构信息

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.

Jozef Stefan Institute, Ljubljana, Slovenia.

出版信息

J Biophotonics. 2023 Jan;16(1):e202200181. doi: 10.1002/jbio.202200181. Epub 2022 Aug 29.

Abstract

Understanding tumors and their microenvironment are essential for successful and accurate disease diagnosis. Tissue physiology and morphology are altered in tumors compared to healthy tissues, and there is a need to monitor tumors and their surrounding tissues, including blood vessels, non-invasively. This preliminary study utilizes a multimodal optical imaging system combining hyperspectral imaging (HSI) and three-dimensional (3D) optical profilometry (OP) to capture hyperspectral images and surface shapes of subcutaneously grown murine tumor models. Hyperspectral images are corrected with 3D OP data and analyzed using the inverse-adding doubling (IAD) method to extract tissue properties such as melanin volume fraction and oxygenation. Blood vessels are segmented using the B-COSFIRE algorithm from oxygenation maps. From 3D OP data, tumor volumes are calculated and compared to manual measurements using a vernier caliper. Results show that tumors can be distinguished from healthy tissue based on most extracted tissue parameters ( ). Furthermore, blood oxygenation is 50% higher within the blood vessels than in the surrounding tissue, and tumor volumes calculated using 3D OP agree within 26% with manual measurements using a vernier caliper. Results suggest that combining HSI and OP could provide relevant quantitative information about tumors and improve the disease diagnosis.

摘要

了解肿瘤及其微环境对于成功、准确的疾病诊断至关重要。与健康组织相比,肿瘤的组织生理学和形态学发生了改变,因此需要对肿瘤及其周围组织(包括血管)进行非侵入性监测。本初步研究利用一种结合高光谱成像(HSI)和三维(3D)光学轮廓术(OP)的多模态光学成像系统,捕获皮下生长的小鼠肿瘤模型的高光谱图像和表面形状。通过 3D OP 数据对高光谱图像进行校正,并使用逆加加倍(IAD)方法进行分析,以提取组织特性,如黑色素体积分数和氧合。使用氧合图中的 B-COSFIRE 算法对血管进行分割。从 3D OP 数据中计算肿瘤体积,并与使用游标卡尺的手动测量值进行比较。结果表明,大多数提取的组织参数( )可用于区分肿瘤与健康组织。此外,血管内的血氧饱和度比周围组织高 50%,使用游标卡尺的手动测量值与 3D OP 计算的肿瘤体积相差 26%以内。结果表明,HSI 和 OP 的结合可以提供有关肿瘤的相关定量信息,并有助于改善疾病诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验