Tomanic Tadej, Stergar Jost, Bozic Tim, Markelc Bostjan, Kranjc Brezar Simona, Sersa Gregor, Milanic Matija
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.
Jozef Stefan Institute, 1000 Ljubljana, Slovenia.
Heliyon. 2024 Oct 26;10(21):e39816. doi: 10.1016/j.heliyon.2024.e39816. eCollection 2024 Nov 15.
The non-invasive monitoring of tumor growth can offer invaluable diagnostic insights and enhance our understanding of tumors and their microenvironment. Integrating hyperspectral imaging (HSI) with three-dimensional optical profilometry (3D OP) makes contactless and non-invasive tumor diagnosis possible by utilizing the inherent tissue contrast provided by visible (VIS) and near-infrared (NIR) light. Consequently, valuable information regarding tumors and healthy tissues can be extracted from the acquired hyperspectral images. Until now, very few methods have been used to monitor tumor models daily and non-invasively. In this research, we conducted a 14-day study monitoring BALB/c mice with subcutaneously grown CT26 murine colon carcinomas , commencing on the day of tumor cell injection. We extracted physiological properties such as total hemoglobin (THB) and tissue oxygenation ( ) using the inverse adding-doubling (IAD) algorithm and manually segmented the tissues. We then selected the ten most relevant features describing tumors using the Max-Relevance Min-Redundancy (MRMR) algorithm and utilized 30 classic and advanced machine learning (ML) algorithms to discriminate tumors from healthy tissues. Finally, we tested the robustness of feature selection and model performance by smoothing tissue parameter maps extracted by IAD with a variable kernel and omitting selected training data. We could discriminate CT26 tumor models from surrounding healthy tissues with an area under the curve (AUC) of up to 1 for models based on the gradient boosting method, linear discriminant analysis, and random forests. Our findings help pave the way for precise and robust imaging biomarkers that could aid tumor diagnosis and advance clinical practice.
肿瘤生长的非侵入性监测能够提供极有价值的诊断见解,并加深我们对肿瘤及其微环境的理解。将高光谱成像(HSI)与三维光学轮廓测量法(3D OP)相结合,利用可见光(VIS)和近红外光(NIR)提供的固有组织对比度,实现了非接触式和非侵入性肿瘤诊断。因此,可以从获取的高光谱图像中提取有关肿瘤和健康组织的有价值信息。到目前为止,很少有方法用于每日非侵入性监测肿瘤模型。在本研究中,我们进行了一项为期14天的研究,从肿瘤细胞注射当天开始监测皮下生长CT26小鼠结肠癌的BALB/c小鼠。我们使用反向加倍法(IAD)提取诸如总血红蛋白(THB)和组织氧合等生理特性,并对组织进行手动分割。然后,我们使用最大相关最小冗余(MRMR)算法选择描述肿瘤的十个最相关特征,并利用30种经典和先进的机器学习(ML)算法区分肿瘤与健康组织。最后,我们通过用可变核平滑IAD提取的组织参数图并省略选定的训练数据,测试了特征选择和模型性能的稳健性。对于基于梯度提升法、线性判别分析和随机森林的模型,我们能够以高达1的曲线下面积(AUC)区分CT26肿瘤模型与周围健康组织。我们的研究结果有助于为精确且稳健的成像生物标志物铺平道路,这些生物标志物可辅助肿瘤诊断并推动临床实践发展。