Department of Physics, University of Cambridge, Cambridge, England, United Kingdom.
Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom.
PLoS One. 2020 Mar 13;15(3):e0229502. doi: 10.1371/journal.pone.0229502. eCollection 2020.
Hyperspectral imaging (HSI) can measure both spatial (morphological) and spectral (biochemical) information from biological tissues. While HSI appears promising for biomedical applications, interpretation of hyperspectral images can be challenging when data is acquired in complex biological environments. Variations in surface topology or optical power distribution at the sample, encountered for example during endoscopy, can lead to errors in post-processing of the HSI data, compromising disease diagnostic capabilities. Here, we propose a background correction method to compensate for such variations, which estimates the optical properties of illumination at the target based on the normalised spectral profile of the light source and the measured HSI intensity values at a fixed wavelength where the absorption characteristics of the sample are relatively low (in this case, 800 nm). We demonstrate the feasibility of the proposed method by imaging blood samples, tissue-mimicking phantoms, and ex vivo chicken tissue. Moreover, using synthetic HSI data composed from experimentally measured spectra, we show the proposed method would improve statistical analysis of HSI data. The proposed method could help the implementation of HSI techniques in practical clinical applications, where controlling the illumination pattern and power is difficult.
高光谱成像(HSI)可以测量生物组织的空间(形态)和光谱(生化)信息。虽然 HSI 在生物医学应用中具有广阔的前景,但是当数据在复杂的生物环境中采集时,对高光谱图像的解释可能具有挑战性。例如,在内窥镜检查过程中遇到的样本表面拓扑或光学功率分布的变化会导致 HSI 数据的后处理出现误差,从而影响疾病诊断能力。在这里,我们提出了一种背景校正方法来补偿这种变化,该方法基于光源归一化光谱轮廓和在样本吸收特性相对较低的固定波长(在这种情况下为 800nm)处测量的 HSI 强度值来估计目标的照明光学特性。我们通过对血液样本、组织模拟体和鸡组织进行成像,验证了所提出方法的可行性。此外,我们使用由实验测量的光谱组成的合成 HSI 数据,展示了所提出的方法将如何改善 HSI 数据的统计分析。该方法有助于在难以控制照明模式和功率的实际临床应用中实施 HSI 技术。