Suppr超能文献

使用可穿戴运动传感器对进行性核上性麻痹进行纵向监测。

Longitudinal Monitoring of Progressive Supranuclear Palsy using Body-Worn Movement Sensors.

机构信息

NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

出版信息

Mov Disord. 2022 Nov;37(11):2263-2271. doi: 10.1002/mds.29194. Epub 2022 Aug 31.

Abstract

BACKGROUND

We have previously shown that wearable technology and machine learning techniques can accurately discriminate between progressive supranuclear palsy (PSP), Parkinson's disease, and healthy controls. To date these techniques have not been applied in longitudinal studies of disease progression in PSP.

OBJECTIVES

We aimed to establish whether data collected by a body-worn inertial measurement unit (IMU) network could predict clinical rating scale scores in PSP and whether it could be used to track disease progression.

METHODS

We studied gait and postural stability in 17 participants with PSP over five visits at 3-month intervals. Participants performed a 2-minute walk and an assessment of postural stability by standing for 30 seconds with their eyes closed, while wearing an array of six IMUs.

RESULTS

Thirty-two gait and posture features were identified, which progressed significantly with time. A simple linear regression model incorporating the three features with the clearest progression pattern was able to detect statistically significant progression 3 months in advance of the clinical scores. A more complex linear regression and a random forest approach did not improve on this.

CONCLUSIONS

The reduced variability of the models, in comparison to clinical rating scales, allows a significant change in disease status from baseline to be observed at an earlier stage. The current study sheds light on the individual features that are important in tracking disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

摘要

背景

我们之前已经证明,可穿戴技术和机器学习技术可以准确地区分进行性核上性麻痹(PSP)、帕金森病和健康对照者。迄今为止,这些技术尚未应用于 PSP 疾病进展的纵向研究中。

目的

我们旨在确定佩戴式惯性测量单元(IMU)网络收集的数据是否可以预测 PSP 患者的临床评分量表评分,以及是否可以用于跟踪疾病进展。

方法

我们在 3 个月的间隔内进行了 5 次访问,对 17 名 PSP 参与者的步态和姿势稳定性进行了研究。参与者在佩戴 6 个 IMU 的情况下进行了 2 分钟的步行和 30 秒闭眼站立姿势稳定性评估。

结果

确定了 32 个步态和姿势特征,这些特征随时间明显进展。一个简单的线性回归模型,包含三个最明显进展模式的特征,能够在临床评分提前 3 个月检测到统计学上显著的进展。更复杂的线性回归和随机森林方法并没有改进这一点。

结论

与临床评分量表相比,模型的可变性降低,这使得能够在更早的阶段观察到从基线到疾病状态的显著变化。本研究揭示了跟踪疾病进展的重要特征。© 2022 作者。运动障碍由 Wiley 期刊代表国际帕金森和运动障碍协会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c416/9805249/34362693583b/MDS-37-2263-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验