Suppr超能文献

联邦机器学习促进人工智能在医疗保健中的应用 - 用于预测冠状动脉钙化评分的概念验证研究。

Federated machine learning for a facilitated implementation of Artificial Intelligence in healthcare - a proof of concept study for the prediction of coronary artery calcification scores.

机构信息

Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany.

Syte - Strategy Institute for Digital Health, Hohe Bleichen 8, 20354 Hamburg, Germany.

出版信息

J Integr Bioinform. 2022 Sep 5;19(4). doi: 10.1515/jib-2022-0032. eCollection 2022 Dec 1.

Abstract

The implementation of Artificial Intelligence (AI) still faces significant hurdles and one key factor is the access to data. One approach that could support that is federated machine learning (FL) since it allows for privacy preserving data access. For this proof of concept, a prediction model for coronary artery calcification scores (CACS) has been applied. The FL was trained based on the data in the different institutions, while the centralized machine learning model was trained on one allocation of data. Both algorithms predict patients with risk scores ≥5 based on age, biological sex, waist circumference, dyslipidemia and HbA1c. The centralized model yields a sensitivity of c. 66% and a specificity of c. 70%. The FL slightly outperforms that with a sensitivity of 67% while slightly underperforming it with a specificity of 69%. It could be demonstrated that CACS prediction is feasible via both, a centralized and an FL approach, and that both show very comparable accuracy. In order to increase accuracy, additional and a higher volume of patient data is required and for that FL is utterly necessary. The developed "CACulator" serves as proof of concept, is available as research tool and shall support future research to facilitate AI implementation.

摘要

人工智能(AI)的实施仍然面临重大障碍,其中一个关键因素是数据的获取。一种可以支持这一点的方法是联邦机器学习(FL),因为它允许在保护隐私的情况下访问数据。为此概念验证,已经应用了冠状动脉钙化评分(CACS)的预测模型。FL 是基于不同机构的数据进行训练的,而集中式机器学习模型是基于数据的一次分配进行训练的。这两种算法都根据年龄、生物性别、腰围、血脂异常和 HbA1c 预测风险评分≥5 的患者。集中式模型的灵敏度约为 66%,特异性约为 70%。FL 的灵敏度略高为 67%,特异性略低为 69%。可以证明,通过集中式和 FL 方法都可以实现 CACS 预测,并且两者的准确性非常相似。为了提高准确性,需要更多和更高体积的患者数据,而这正是 FL 所必需的。开发的“CACulator”是一个概念验证,可用作研究工具,并将支持未来的研究,以促进 AI 的实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2026/9800042/39e490ce038c/j_jib-2022-0032_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验