Suppr超能文献

医疗保健领域联合数据库中隐私保护分布式机器学习的系统综述

Systematic Review of Privacy-Preserving Distributed Machine Learning From Federated Databases in Health Care.

作者信息

Zerka Fadila, Barakat Samir, Walsh Sean, Bogowicz Marta, Leijenaar Ralph T H, Jochems Arthur, Miraglio Benjamin, Townend David, Lambin Philippe

机构信息

The D-Lab, Department of Precision Medicine, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.

Oncoradiomics, Liège, Belgium.

出版信息

JCO Clin Cancer Inform. 2020 Mar;4:184-200. doi: 10.1200/CCI.19.00047.

Abstract

Big data for health care is one of the potential solutions to deal with the numerous challenges of health care, such as rising cost, aging population, precision medicine, universal health coverage, and the increase of noncommunicable diseases. However, data centralization for big data raises privacy and regulatory concerns.Covered topics include (1) an introduction to privacy of patient data and distributed learning as a potential solution to preserving these data, a description of the legal context for patient data research, and a definition of machine/deep learning concepts; (2) a presentation of the adopted review protocol; (3) a presentation of the search results; and (4) a discussion of the findings, limitations of the review, and future perspectives.Distributed learning from federated databases makes data centralization unnecessary. Distributed algorithms iteratively analyze separate databases, essentially sharing research questions and answers between databases instead of sharing the data. In other words, one can learn from separate and isolated datasets without patient data ever leaving the individual clinical institutes.Distributed learning promises great potential to facilitate big data for medical application, in particular for international consortiums. Our purpose is to review the major implementations of distributed learning in health care.

摘要

医疗保健领域的大数据是应对医疗保健众多挑战的潜在解决方案之一,这些挑战包括成本上升、人口老龄化、精准医疗、全民医保以及非传染性疾病的增加。然而,大数据的数据集中化引发了隐私和监管方面的担忧。涵盖的主题包括:(1)介绍患者数据隐私以及作为保护这些数据的潜在解决方案的分布式学习,描述患者数据研究的法律背景,以及定义机器学习/深度学习概念;(2)介绍所采用的综述方案;(3)展示搜索结果;以及(4)讨论研究结果、综述的局限性和未来展望。从联邦数据库进行分布式学习使得数据集中化不再必要。分布式算法迭代地分析单独的数据库,本质上是在数据库之间共享研究问题和答案,而不是共享数据。换句话说,人们可以从单独且孤立的数据集中进行学习,而患者数据无需离开各个临床机构。分布式学习有望为医疗应用中的大数据提供巨大潜力,特别是对于国际联盟而言。我们的目的是综述分布式学习在医疗保健领域的主要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a71d/7113079/c6d504842591/CCI.19.00047f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验