Suppr超能文献

人工智能在缺血性心脏病预防中的应用

Artificial Intelligence in Ischemic Heart Disease Prevention.

作者信息

Parsa Shyon, Shah Priyansh, Doijad Ritu, Rodriguez Fatima

机构信息

Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Department of Internal Medicine, Jacobi Hospital/Albert Einstein College of Medicine, New York City, NY, USA.

出版信息

Curr Cardiol Rep. 2025 Feb 1;27(1):44. doi: 10.1007/s11886-025-02203-0.

Abstract

PURPOSE OF REVIEW

This review discusses the transformative potential of artificial intelligence (AI) in ischemic heart disease (IHD) prevention. It explores advancements of AI in predictive modeling, biomarker discovery, and cardiovascular imaging. Finally, considerations for clinical integration of AI into preventive cardiology workflows are reviewed.

RECENT FINDINGS

AI-driven tools, including machine learning (ML) models, have greatly enhanced IHD risk prediction by integrating multimodal data from clinical sources, patient-generated inputs, biomarkers, and imaging. Applications in these various data sources have demonstrated superior diagnostic accuracy compared to traditional methods. However, ensuring algorithm fairness, mitigating biases, enhancing explainability, and addressing ethical concerns remain critical for successful deployment. Emerging technologies like federated learning and explainable AI are fostering more robust, scalable, and equitable adoption. AI holds promise in reshaping preventive cardiology workflows, offering more precise risk assessment and personalized care. Addressing barriers related to equity, transparency, and stakeholder engagement is key for seamless clinical integration and sustainable, lasting improvements in cardiovascular care.

摘要

综述目的

本综述探讨人工智能(AI)在缺血性心脏病(IHD)预防方面的变革潜力。它探讨了AI在预测建模、生物标志物发现和心血管成像方面的进展。最后,回顾了将AI临床整合到预防心脏病学工作流程中的注意事项。

最新发现

包括机器学习(ML)模型在内的AI驱动工具,通过整合来自临床来源、患者生成的输入、生物标志物和成像的多模态数据,极大地提高了IHD风险预测能力。与传统方法相比,在这些各种数据源中的应用已显示出更高的诊断准确性。然而,确保算法公平性、减轻偏差、增强可解释性以及解决伦理问题对于成功部署仍然至关重要。联邦学习和可解释AI等新兴技术正在促进更强大、可扩展和公平的应用。AI有望重塑预防心脏病学工作流程,提供更精确的风险评估和个性化护理。解决与公平性、透明度和利益相关者参与相关的障碍是实现无缝临床整合以及心血管护理可持续、持久改善的关键。

相似文献

2
Artificial intelligence in hospital infection prevention: an integrative review.医院感染预防中的人工智能:一项综合综述。
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
5
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.人工智能将彻底改变炎症性肠病临床试验:全面综述。
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
10
Harnessing AI for enhanced evidence-based laboratory medicine (EBLM).利用人工智能加强循证检验医学(EBLM)。
Clin Chim Acta. 2025 Mar 1;569:120181. doi: 10.1016/j.cca.2025.120181. Epub 2025 Feb 3.

本文引用的文献

1
Bias in medical AI: Implications for clinical decision-making.医学人工智能中的偏差:对临床决策的影响。
PLOS Digit Health. 2024 Nov 7;3(11):e0000651. doi: 10.1371/journal.pdig.0000651. eCollection 2024 Nov.
4
Challenges for augmenting intelligence in cardiac imaging.心脏成像中增强智能的挑战。
Lancet Digit Health. 2024 Oct;6(10):e739-e748. doi: 10.1016/S2589-7500(24)00142-0. Epub 2024 Aug 29.
7
8
The Evolving Landscape of Cardiovascular Risk Assessment.心血管风险评估的发展态势
JAMA. 2024 Sep 24;332(12):967-969. doi: 10.1001/jama.2024.13247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验