Suppr超能文献

快速、灵敏的分析方法,用于测定土壤中总游离氨基酸的氮稳定同位素比值。

Rapid, sensitive analysis method for determining the nitrogen stable isotope ratio of total free amino acids in soil.

机构信息

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, Changsha, Hunan, China.

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China.

出版信息

Rapid Commun Mass Spectrom. 2022 Nov 15;36(21):e9390. doi: 10.1002/rcm.9390.

Abstract

RATIONALE

The amino acid-nitrogen (AA-N) isotope analysis of naturally abundant or isotope-labeled samples is indispensable for tracing nitrogen transfer in soil nitrogen biogeochemical cycling processes. Despite the usefulness of AA-N isotope analysis, the preparation methods are complex and time-consuming, and necessitate the use of toxic reagents.

METHODS

We present an improved, rapid method for AA-N isotope analysis with high precision. At a high pH, AA-N was released and oxidized to N O using ClO under vacuum. Additionally, purge-and-trap isotope ratio mass spectrometry was used to analyze N O. Moreover, we investigated the effect of various factors on the N O conversion process with glycine and applied the results to seven representative single-N AAs (alanine, serine, cysteine, aspartic acid, glutamic acid, leucine, and phenylalanine) and five poly-N AAs (lysine, arginine, histidine, tryptophan, and asparagine), as well as side-chain analogs, blank reagent, and other N forms.

RESULTS

The concentration of ClO and the pH were determined to be crucial factors for achieving desirable AA-N to N O conversion efficiencies. Glycine-N had the highest N O yield of 70%, with isotopic results consistent with those of the reference values at a high precision (within 0.5‰ for natural abundance and 0.01 atom% for N-enrichment) at the nanomolar N level. Additionally, the α-NH AAs were labile, and the single-N AAs were more easily converted to N O than poly-N AAs. With the exception of γ-aminobutyric acid, the N O conversion efficiencies of the side-chain N analogs were very low (below 5%). This method was also applicable to the N analysis of the total free AAs in complex soil samples without interference from analytical blanks and other forms of N.

CONCLUSIONS

Our method is highly selective for the α-NH groups of an amino acid, and the oxidation of the side chain is difficult. In addition, the method is sensitive, rapid, and convenient, and does not require toxic reagents.

摘要

原理

天然存在或同位素标记样品的氨基酸-氮(AA-N)同位素分析对于追踪土壤氮生物地球化学循环过程中的氮转移是必不可少的。尽管 AA-N 同位素分析很有用,但该方法的准备过程复杂且耗时,并且需要使用有毒试剂。

方法

我们提出了一种改进的、快速的高精度 AA-N 同位素分析方法。在高 pH 值下,AA-N 在真空下用 ClO 释放和氧化为 N O。此外,使用吹扫-捕集同位素质谱法分析 N O。此外,我们研究了各种因素对甘氨酸 N O 转化过程的影响,并将结果应用于 7 种代表性的单-N AA(丙氨酸、丝氨酸、半胱氨酸、天冬氨酸、谷氨酸、亮氨酸和苯丙氨酸)和 5 种多-N AA(赖氨酸、精氨酸、组氨酸、色氨酸和天冬酰胺)以及侧链类似物、空白试剂和其他 N 形式。

结果

ClO 的浓度和 pH 值被确定为实现理想的 AA-N 到 N O 转化率的关键因素。甘氨酸-N 的 N O 产率最高,为 70%,在纳摩尔 N 水平下具有很高的精度(天然丰度的 0.5‰以内, N 富集的 0.01 原子%以内),与参考值一致。此外,α-NH AA 不稳定,单-N AA 比多-N AA 更容易转化为 N O。除 γ-氨基丁酸外,侧链 N 类似物的 N O 转化率非常低(低于 5%)。该方法也适用于复杂土壤样品中总游离 AA 的 N 分析,不受分析空白和其他 N 形式的干扰。

结论

我们的方法对氨基酸的α-NH 基团具有高度选择性,侧链的氧化较难。此外,该方法具有灵敏度高、速度快、方便,且不使用有毒试剂的优点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验