Suppr超能文献

铝掺杂锡烯纳米管上NO、SO和O分子的吸附:一项密度泛函理论研究。

The adsorption of NO, SO, and O molecules on the Al-doped stanene nanotube: a DFT study.

作者信息

Karimi Nafiseh, Sardroodi Jaber Jahanbin, Rastkar Alireza Ebrahimzadeh

机构信息

Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran.

Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran.

出版信息

J Mol Model. 2022 Sep 3;28(10):290. doi: 10.1007/s00894-022-05296-4.

Abstract

Adsorption of pollutant gas molecules (NO, SO, and O) on the surface of the Al-doped stanene nanotube was investigated within the first principle calculations of density functional theory (DFT). Adsorption mechanisms were studied by analyzing optimized structures, band structures, projected density of states (PDOS), charge density difference (CDD), molecular orbitals, and band theory. Investigation of charge transfer by Mulliken population showed that NO accumulated while SO and O depleted charge density on the Al-doped nanotube. The differences in band structures before and after adsorption implied that the electronic characteristics of Al-doped nanotube changed dramatically in case of NO adsorption, which converted Al-doped nanotube to a semiconductor material. High adsorption energy and the significant overlap between PDOS spectra indicated that the adsorption process was chemisorption for NO, SO, and O on the doped nanotube with the obtained order of O > SO > NO. The results showed that the adsorption of NO, SO, and O occurred on the Al-doped stanene nanotube, and that all the three gas molecules could be detected by Al-doped stanene nanotube with various detection strengths.

摘要

在密度泛函理论(DFT)的第一性原理计算中,研究了污染物气体分子(NO、SO和O)在铝掺杂锡烯纳米管表面的吸附情况。通过分析优化结构、能带结构、投影态密度(PDOS)、电荷密度差(CDD)、分子轨道和能带理论来研究吸附机制。通过Mulliken布居对电荷转移的研究表明,NO在铝掺杂纳米管上积累,而SO和O使电荷密度减少。吸附前后能带结构的差异表明,在NO吸附的情况下,铝掺杂纳米管的电子特性发生了显著变化,这使得铝掺杂纳米管转变为一种半导体材料。高吸附能以及PDOS谱之间的显著重叠表明,对于掺杂纳米管上的NO、SO和O,吸附过程是化学吸附,吸附顺序为O>SO>NO。结果表明,NO、SO和O在铝掺杂锡烯纳米管上发生吸附,并且铝掺杂锡烯纳米管能够以不同的检测强度检测这三种气体分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验