Department of Plastic-Reconstructive and Hand Surgery, Amsterdam University Medical Centre-Academic Medical Centre, Amsterdam, The Netherlands.
Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
J Orthop Res. 2023 May;41(5):1014-1021. doi: 10.1002/jor.25438. Epub 2022 Oct 3.
Segmental bone defects are often performed with cryopreserved allografts. They provide immediate stability, but risk nonunion, infection and late stress fracture. Improving the rate and extent of bone revitalization may improve results. Angiogenesis from surgically placed arteriovenous (AV) bundles improves bone blood flow and vitality in cryopreserved rat femora, augmented by vasculogenic growth factors. This study tests the same principal in Yucatan mini-pigs with a tibial diaphyseal defect, combining surgical angiogenesis with angiogenic gene therapy within cryopreserved orthotopically-placed allografts. Tibial diaphyseal defects were reconstructed with cryopreserved allografts and rigid internal fixation in 16 mini pigs. Half of the cranial tibial AV bundles placed within the allograft medullary canal were transfected with an adeno-associated virus containing vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) genes (AAV9.VEGF.PDGF). Bone remodeling, angiogenesis, and allograft healing were assessed. During the postoperative survival period 5 of 8 transfected animals developed cutaneous benign vascular lesions at sites remote from the operated hindlimb, causing excessive bleeding. Within the allograft, both medullary (p = 0.013) and cortical (p = 0.009) vascular volumes were higher and vessels more mature than nontransfected allografts. Bone turnover (p = 0.013), bone mineralization (p = 0.018), bone healing (p = 0.008) and graft incorporation (p = 0.006) were all significantly higher in the gene therapy group. In a large animal tibial defect model, gene therapy of implanted AV bundles improved revascularization, remodeling and healing of cryopreserved allografts used for limb reconstruction. However, benign vascular lesions causing excessive bleeding developed in 5 out of 8 pigs transfected with AAV containing genes for VEGF and PDGF. This unforeseen complication makes vasculogenic gene therapy unacceptable for clinical use.
节段性骨缺损常采用冷冻同种异体移植物进行治疗。冷冻同种异体移植物可提供即时稳定性,但存在不愈合、感染和晚期应力性骨折的风险。改善骨再活化的速度和程度可能会改善治疗效果。手术放置的动静脉(AV)束可改善冷冻大鼠股骨的骨血流和活力,并通过血管生成生长因子增强。本研究在使用冷冻同种异体移植的 Yucatan 小型猪的胫骨骨干缺损模型中测试了相同的原理,将手术血管生成与血管生成基因治疗相结合。16 只小型猪的胫骨骨干缺损采用冷冻同种异体移植物和刚性内固定进行重建。将 AV 束的一半放置在同种异体移植物的髓腔内,并用含有血管内皮生长因子(VEGF)和血小板衍生生长因子(PDGF)基因的腺相关病毒(AAV9.VEGF.PDGF)转染。评估骨重塑、血管生成和同种异体移植物愈合情况。在术后存活期间,8 只转染动物中有 5 只在远离手术后腿的部位出现皮肤良性血管病变,导致过度出血。在同种异体移植物内,髓内(p=0.013)和皮质(p=0.009)血管体积均高于未转染的同种异体移植物,血管更成熟。基因治疗组的骨转换(p=0.013)、骨矿化(p=0.018)、骨愈合(p=0.008)和移植物结合(p=0.006)均显著更高。在大型动物胫骨缺损模型中,植入的 AV 束的基因治疗改善了冷冻同种异体移植物的再血管化、重塑和愈合,用于肢体重建。然而,转染了含有 VEGF 和 PDGF 基因的 AAV 的 8 只猪中有 5 只出现良性血管病变导致过度出血。这种意外的并发症使得血管生成基因治疗无法用于临床。