Suppr超能文献

使用边缘结构联合模型估计时变治疗对复发性事件和生存的影响:在致心律失常性心肌病中的应用。

Using marginal structural joint models to estimate the effect of a time-varying treatment on recurrent events and survival: An application on arrhythmogenic cardiomyopathy.

机构信息

Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy.

MOX - Modeling and Scientific Computing Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy.

出版信息

Biom J. 2022 Dec;64(8):1374-1388. doi: 10.1002/bimj.202100003. Epub 2022 Sep 4.

Abstract

In many clinical applications to evaluate the effect of a treatment, randomized control trials are difficult to carry out. On the other hand, clinical observational registries are often available and they contain longitudinal data regarding clinical parameters, drug therapies, and outcomes. In the past, much research has addressed causal methods to estimate treatment effects from observational studies. In the context of time-varying treatments, marginal structural models are often used. However, most analyses have focused on binary outcomes or time-to-the-first event analyses. The novelty of our approach is to combine the marginal structural methodology with the case where correlated recurrent events and survival are the outcomes of interest. Our work focuses on solving the nontrivial problem of defining the measures of effect, specifying the model for the time-dependent weights and the model to estimate the outcome, implementing them, and finally estimating the final treatment effects in this life-history setting. Our approach provides a strategy that allows obtaining treatment effect estimates both on the recurrent events and the survival with a clear causal and clinical interpretation. At the same time, the strategy we propose is based on flexible modeling choices such as the use of joint models to capture the correlation within events from the same subject and the specification of time-dependent treatment effects. The clinical problem which motivated our work is the evaluation of the treatment effect of beta-blockers in arrhythmogenic right ventricular cardiomyopathy (ARVC/D), and the dataset comes from the Trieste Heart Muscle Disease Registry.

摘要

在许多临床应用中,评估治疗效果时,随机对照试验难以实施。另一方面,临床观察性登记通常可用,并且包含有关临床参数、药物治疗和结果的纵向数据。过去,许多研究都针对从观察性研究中估计治疗效果的因果方法。在时变治疗的情况下,通常使用边际结构模型。然而,大多数分析都集中在二项结果或首次事件时间分析上。我们方法的新颖之处在于将边缘结构方法与相关的复发性事件和生存作为感兴趣的结果相结合。我们的工作重点是解决定义效应度量、指定时变权重模型和估计结果模型的非平凡问题,并最终在这种生命史设置中估计最终治疗效果。我们的方法提供了一种策略,允许在复发性事件和生存上获得具有明确因果和临床解释的治疗效果估计。同时,我们提出的策略基于灵活的建模选择,例如使用联合模型来捕获来自同一受试者的事件内的相关性,以及指定时变治疗效果。激发我们工作的临床问题是评估β受体阻滞剂在致心律失常性右心室心肌病(ARVC/D)中的治疗效果,并且该数据集来自的里雅斯特心肌疾病登记处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e713/10087972/4876f241ee23/BIMJ-64-1374-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验