Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA.
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
Brain. 2023 Apr 19;146(4):1561-1579. doi: 10.1093/brain/awac318.
Bridging integrator 1 (BIN1) is the second most prevalent genetic risk factor identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease. BIN1 encodes an adaptor protein that regulates membrane dynamics in the context of endocytosis and neurotransmitter vesicle release. In vitro evidence suggests that BIN1 can directly bind to tau in the cytosol. In addition, BIN1's function limits extracellular tau seed uptake by endocytosis and subsequent propagation as well as influences tau release through exosomes. However, the in vivo roles of BIN1 in tau pathogenesis and tauopathy-mediated neurodegeneration remain uncharacterized. We generated conditional knockout mice with a selective loss of Bin1 expression in the forebrain excitatory neurons and oligodendrocytes in P301S human tau transgenic background (line PS19). PS19 mice develop age-dependent tau neuropathology and motor deficits and are commonly used to study Alzheimer's disease tau pathophysiology. The severity of motor deficits and neuropathology was compared between experimental and control mice that differ with respect to forebrain BIN1 expression. BIN1's involvement in tau pathology and neuroinflammation was quantified by biochemical methods and immunostaining. Transcriptome changes were profiled by RNA-sequencing analysis to gain molecular insights. The loss of forebrain BIN1 expression in PS19 mice exacerbated tau pathology in the somatosensory cortex, thalamus, spinal cord and sciatic nerve, accelerated disease progression and caused early death. Intriguingly, the loss of BIN1 also mitigated tau neuropathology in select regions, including the hippocampus, entorhinal/piriform cortex, and amygdala, thus attenuating hippocampal synapse loss, neuronal death, neuroinflammation and brain atrophy. At the molecular level, the loss of forebrain BIN1 elicited complex neuronal and non-neuronal transcriptomic changes, including altered neuroinflammatory gene expression, concomitant with an impaired microglial transition towards the disease-associated microglial phenotype. These results provide crucial new information on in vivo BIN1 function in the context of tau pathogenesis. We conclude that forebrain neuronal BIN1 expression promotes hippocampal tau pathogenesis and neuroinflammation. Our findings highlight an exciting region specificity in neuronal BIN1 regulation of tau pathogenesis and reveal cell-autonomous and non-cell-autonomous mechanisms involved in BIN1 modulation of tau neuropathology.
桥接整合蛋白 1(BIN1)是全基因组关联研究(GWAS)确定的第二个最常见的晚发性阿尔茨海默病遗传风险因素。BIN1 编码一种衔接蛋白,可在胞吞作用和神经递质囊泡释放的背景下调节膜动力学。体外证据表明,BIN1 可以直接在细胞质中与 tau 结合。此外,BIN1 的功能限制了细胞外 tau 种子的胞吞摄取及其随后的传播,并且还通过外泌体影响 tau 的释放。然而,BIN1 在 tau 发病机制和 tau 病介导的神经退行性变中的体内作用仍未被描述。我们在 P301S 人类 tau 转基因背景下(PS19 线)生成了选择性敲除前额叶兴奋性神经元和少突胶质细胞中 Bin1 表达的条件性敲除小鼠。PS19 小鼠表现出年龄依赖性 tau 神经病理学和运动功能障碍,常用于研究阿尔茨海默病 tau 病理生理学。通过比较实验小鼠和控制小鼠之间的运动功能障碍和神经病理学的严重程度,来研究前额叶 BIN1 表达的差异。通过生化方法和免疫染色来定量研究 BIN1 参与 tau 病理学和神经炎症的情况。通过 RNA 测序分析来进行转录组变化分析,以获得分子见解。在 PS19 小鼠中,前额叶 BIN1 表达的缺失加剧了体感皮层、丘脑、脊髓和坐骨神经中的 tau 病理学,加速了疾病进展并导致早期死亡。有趣的是,BIN1 的缺失也减轻了海马体、内嗅皮层/梨状皮层和杏仁核等特定区域的 tau 神经病理学,从而减轻了海马体突触丢失、神经元死亡、神经炎症和脑萎缩。在分子水平上,前额叶 BIN1 的缺失引起了复杂的神经元和非神经元转录组变化,包括神经炎症基因表达的改变,同时伴随着小胶质细胞向疾病相关小胶质细胞表型的转变受损。这些结果提供了关于 tau 发病机制中体内 BIN1 功能的重要新信息。我们得出结论,前额叶神经元 BIN1 表达促进了海马体 tau 的发病机制和神经炎症。我们的研究结果强调了神经元 BIN1 对 tau 发病机制的调控具有令人兴奋的区域特异性,并揭示了 BIN1 调节 tau 神经病理学的细胞自主和非细胞自主机制。