Li Xiaojin, Tao Shiqiang, Lhatoo Samden D, Cui Licong, Huang Yan, Hampson Johnson P, Zhang Guo-Qiang
Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States.
Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States.
Front Big Data. 2022 Aug 17;5:965715. doi: 10.3389/fdata.2022.965715. eCollection 2022.
Epilepsy affects ~2-3 million individuals in the United States, a third of whom have uncontrolled seizures. Sudden unexpected death in epilepsy (SUDEP) is a catastrophic and fatal complication of poorly controlled epilepsy and is the primary cause of mortality in such patients. Despite its huge public health impact, with a ~1/1,000 incidence rate in persons with epilepsy, it is an uncommon enough phenomenon to require multi-center efforts for well-powered studies. We developed the Multimodal SUDEP Data Resource (MSDR), a comprehensive system for sharing multimodal epilepsy data in the NIH funded Center for SUDEP Research. The MSDR aims at accelerating research to address critical questions about personalized risk assessment of SUDEP. We used a metadata-guided approach, with a set of common epilepsy-specific terms enforcing uniform semantic interpretation of data elements across three main components: (1) multi-site annotated datasets; (2) user interfaces for capturing, managing, and accessing data; and (3) computational approaches for the analysis of multimodal clinical data. We incorporated the process for managing dataset-specific data use agreements, evidence of Institutional Review Board review, and the corresponding access control in the MSDR web portal. The metadata-guided approach facilitates structural and semantic interoperability, ultimately leading to enhanced data reusability and scientific rigor. MSDR prospectively integrated and curated epilepsy patient data from seven institutions, and it currently contains data on 2,739 subjects and 10,685 multimodal clinical data files with different data formats. In total, 55 users registered in the current MSDR data repository, and 6 projects have been funded to apply MSDR in epilepsy research, including three R01 projects and three R21 projects.
在美国,癫痫影响着约200万至300万人,其中三分之一的人癫痫发作无法得到控制。癫痫性猝死(SUDEP)是癫痫控制不佳的一种灾难性致命并发症,是此类患者死亡的主要原因。尽管其对公众健康影响巨大,癫痫患者中的发病率约为千分之一,但这一现象并不常见,需要多中心共同努力开展有足够效力的研究。我们开发了多模式SUDEP数据资源(MSDR),这是一个在国立卫生研究院资助的SUDEP研究中心用于共享多模式癫痫数据的综合系统。MSDR旨在加速研究,以解决有关SUDEP个性化风险评估的关键问题。我们采用了一种元数据引导的方法,使用一组常见的癫痫特定术语,对三个主要组件中的数据元素进行统一的语义解释:(1)多站点注释数据集;(2)用于捕获、管理和访问数据的用户界面;(3)用于分析多模式临床数据的计算方法。我们在MSDR门户网站中纳入了管理特定数据集数据使用协议的流程、机构审查委员会审查的证据以及相应的访问控制。元数据引导的方法促进了结构和语义的互操作性,最终提高了数据的可重用性和科学严谨性。MSDR前瞻性地整合并整理了来自七个机构的癫痫患者数据,目前包含2739名受试者的数据以及10685个不同数据格式的多模式临床数据文件。目前,共有55名用户在MSDR数据存储库中注册,并且有6个项目获得资助,将MSDR应用于癫痫研究,其中包括三个R01项目和三个R21项目。